Metamath Proof Explorer


Theorem 11prm

Description: 11 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 11prm 1 1 ∈ ℙ

Proof

Step Hyp Ref Expression
1 1nn0 1 ∈ ℕ0
2 1nn 1 ∈ ℕ
3 1 2 decnncl 1 1 ∈ ℕ
4 1lt10 1 < 1 0
5 2 1 1 4 declti 1 < 1 1
6 0nn0 0 ∈ ℕ0
7 2cn 2 ∈ ℂ
8 7 mul02i ( 0 · 2 ) = 0
9 1e0p1 1 = ( 0 + 1 )
10 1 6 8 9 dec2dvds ¬ 2 ∥ 1 1
11 3nn 3 ∈ ℕ
12 3nn0 3 ∈ ℕ0
13 2nn 2 ∈ ℕ
14 3t3e9 ( 3 · 3 ) = 9
15 14 oveq1i ( ( 3 · 3 ) + 2 ) = ( 9 + 2 )
16 9p2e11 ( 9 + 2 ) = 1 1
17 15 16 eqtri ( ( 3 · 3 ) + 2 ) = 1 1
18 2lt3 2 < 3
19 11 12 13 17 18 ndvdsi ¬ 3 ∥ 1 1
20 2nn0 2 ∈ ℕ0
21 5nn0 5 ∈ ℕ0
22 1lt2 1 < 2
23 1 20 1 21 4 22 decltc 1 1 < 2 5
24 3 5 10 19 23 prmlem1 1 1 ∈ ℙ