Description: Lemma for 1259prm . Calculate a power mod. In decimal, we calculate 2 ^ 1 6 = 5 2 N + 6 8 == 6 8 and 2 ^ 1 7 == 6 8 x. 2 = 1 3 6 in this lemma. (Contributed by Mario Carneiro, 22-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015) (Proof shortened by AV, 16-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 1259prm.1 | ⊢ 𝑁 = ; ; ; 1 2 5 9 | |
Assertion | 1259lem1 | ⊢ ( ( 2 ↑ ; 1 7 ) mod 𝑁 ) = ( ; ; 1 3 6 mod 𝑁 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1259prm.1 | ⊢ 𝑁 = ; ; ; 1 2 5 9 | |
2 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
3 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
4 | 2 3 | deccl | ⊢ ; 1 2 ∈ ℕ0 |
5 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
6 | 4 5 | deccl | ⊢ ; ; 1 2 5 ∈ ℕ0 |
7 | 9nn | ⊢ 9 ∈ ℕ | |
8 | 6 7 | decnncl | ⊢ ; ; ; 1 2 5 9 ∈ ℕ |
9 | 1 8 | eqeltri | ⊢ 𝑁 ∈ ℕ |
10 | 2nn | ⊢ 2 ∈ ℕ | |
11 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
12 | 2 11 | deccl | ⊢ ; 1 6 ∈ ℕ0 |
13 | 0z | ⊢ 0 ∈ ℤ | |
14 | 8nn0 | ⊢ 8 ∈ ℕ0 | |
15 | 11 14 | deccl | ⊢ ; 6 8 ∈ ℕ0 |
16 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
17 | 2 16 | deccl | ⊢ ; 1 3 ∈ ℕ0 |
18 | 17 11 | deccl | ⊢ ; ; 1 3 6 ∈ ℕ0 |
19 | 5 3 | deccl | ⊢ ; 5 2 ∈ ℕ0 |
20 | 19 | nn0zi | ⊢ ; 5 2 ∈ ℤ |
21 | 3 14 | nn0expcli | ⊢ ( 2 ↑ 8 ) ∈ ℕ0 |
22 | eqid | ⊢ ( ( 2 ↑ 8 ) mod 𝑁 ) = ( ( 2 ↑ 8 ) mod 𝑁 ) | |
23 | 14 | nn0cni | ⊢ 8 ∈ ℂ |
24 | 2cn | ⊢ 2 ∈ ℂ | |
25 | 8t2e16 | ⊢ ( 8 · 2 ) = ; 1 6 | |
26 | 23 24 25 | mulcomli | ⊢ ( 2 · 8 ) = ; 1 6 |
27 | 9nn0 | ⊢ 9 ∈ ℕ0 | |
28 | eqid | ⊢ ; 6 8 = ; 6 8 | |
29 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
30 | 7nn0 | ⊢ 7 ∈ ℕ0 | |
31 | 29 30 | deccl | ⊢ ; 4 7 ∈ ℕ0 |
32 | eqid | ⊢ ; ; 1 2 5 = ; ; 1 2 5 | |
33 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
34 | 11 | dec0h | ⊢ 6 = ; 0 6 |
35 | eqid | ⊢ ; 4 7 = ; 4 7 | |
36 | 4cn | ⊢ 4 ∈ ℂ | |
37 | 36 | addid2i | ⊢ ( 0 + 4 ) = 4 |
38 | 37 | oveq1i | ⊢ ( ( 0 + 4 ) + 1 ) = ( 4 + 1 ) |
39 | 4p1e5 | ⊢ ( 4 + 1 ) = 5 | |
40 | 38 39 | eqtri | ⊢ ( ( 0 + 4 ) + 1 ) = 5 |
41 | 7cn | ⊢ 7 ∈ ℂ | |
42 | 6cn | ⊢ 6 ∈ ℂ | |
43 | 7p6e13 | ⊢ ( 7 + 6 ) = ; 1 3 | |
44 | 41 42 43 | addcomli | ⊢ ( 6 + 7 ) = ; 1 3 |
45 | 33 11 29 30 34 35 40 16 44 | decaddc | ⊢ ( 6 + ; 4 7 ) = ; 5 3 |
46 | 3 11 | deccl | ⊢ ; 2 6 ∈ ℕ0 |
47 | eqid | ⊢ ; 1 2 = ; 1 2 | |
48 | 5 | dec0h | ⊢ 5 = ; 0 5 |
49 | eqid | ⊢ ; 2 6 = ; 2 6 | |
50 | 24 | addid2i | ⊢ ( 0 + 2 ) = 2 |
51 | 50 | oveq1i | ⊢ ( ( 0 + 2 ) + 1 ) = ( 2 + 1 ) |
52 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
53 | 51 52 | eqtri | ⊢ ( ( 0 + 2 ) + 1 ) = 3 |
54 | 5cn | ⊢ 5 ∈ ℂ | |
55 | 6p5e11 | ⊢ ( 6 + 5 ) = ; 1 1 | |
56 | 42 54 55 | addcomli | ⊢ ( 5 + 6 ) = ; 1 1 |
57 | 33 5 3 11 48 49 53 2 56 | decaddc | ⊢ ( 5 + ; 2 6 ) = ; 3 1 |
58 | 10nn0 | ⊢ ; 1 0 ∈ ℕ0 | |
59 | eqid | ⊢ ; 5 2 = ; 5 2 | |
60 | 58 | nn0cni | ⊢ ; 1 0 ∈ ℂ |
61 | 3cn | ⊢ 3 ∈ ℂ | |
62 | dec10p | ⊢ ( ; 1 0 + 3 ) = ; 1 3 | |
63 | 60 61 62 | addcomli | ⊢ ( 3 + ; 1 0 ) = ; 1 3 |
64 | 54 | mulid1i | ⊢ ( 5 · 1 ) = 5 |
65 | 1p0e1 | ⊢ ( 1 + 0 ) = 1 | |
66 | 64 65 | oveq12i | ⊢ ( ( 5 · 1 ) + ( 1 + 0 ) ) = ( 5 + 1 ) |
67 | 5p1e6 | ⊢ ( 5 + 1 ) = 6 | |
68 | 66 67 | eqtri | ⊢ ( ( 5 · 1 ) + ( 1 + 0 ) ) = 6 |
69 | 24 | mulid1i | ⊢ ( 2 · 1 ) = 2 |
70 | 69 | oveq1i | ⊢ ( ( 2 · 1 ) + 3 ) = ( 2 + 3 ) |
71 | 3p2e5 | ⊢ ( 3 + 2 ) = 5 | |
72 | 61 24 71 | addcomli | ⊢ ( 2 + 3 ) = 5 |
73 | 70 72 48 | 3eqtri | ⊢ ( ( 2 · 1 ) + 3 ) = ; 0 5 |
74 | 5 3 2 16 59 63 2 5 33 68 73 | decmac | ⊢ ( ( ; 5 2 · 1 ) + ( 3 + ; 1 0 ) ) = ; 6 5 |
75 | 2 | dec0h | ⊢ 1 = ; 0 1 |
76 | 5t2e10 | ⊢ ( 5 · 2 ) = ; 1 0 | |
77 | 00id | ⊢ ( 0 + 0 ) = 0 | |
78 | 76 77 | oveq12i | ⊢ ( ( 5 · 2 ) + ( 0 + 0 ) ) = ( ; 1 0 + 0 ) |
79 | dec10p | ⊢ ( ; 1 0 + 0 ) = ; 1 0 | |
80 | 78 79 | eqtri | ⊢ ( ( 5 · 2 ) + ( 0 + 0 ) ) = ; 1 0 |
81 | 2t2e4 | ⊢ ( 2 · 2 ) = 4 | |
82 | 81 | oveq1i | ⊢ ( ( 2 · 2 ) + 1 ) = ( 4 + 1 ) |
83 | 82 39 48 | 3eqtri | ⊢ ( ( 2 · 2 ) + 1 ) = ; 0 5 |
84 | 5 3 33 2 59 75 3 5 33 80 83 | decmac | ⊢ ( ( ; 5 2 · 2 ) + 1 ) = ; ; 1 0 5 |
85 | 2 3 16 2 47 57 19 5 58 74 84 | decma2c | ⊢ ( ( ; 5 2 · ; 1 2 ) + ( 5 + ; 2 6 ) ) = ; ; 6 5 5 |
86 | 5t5e25 | ⊢ ( 5 · 5 ) = ; 2 5 | |
87 | 3 5 67 86 | decsuc | ⊢ ( ( 5 · 5 ) + 1 ) = ; 2 6 |
88 | 54 24 76 | mulcomli | ⊢ ( 2 · 5 ) = ; 1 0 |
89 | 61 | addid2i | ⊢ ( 0 + 3 ) = 3 |
90 | 2 33 16 88 89 | decaddi | ⊢ ( ( 2 · 5 ) + 3 ) = ; 1 3 |
91 | 5 3 16 59 5 16 2 87 90 | decrmac | ⊢ ( ( ; 5 2 · 5 ) + 3 ) = ; ; 2 6 3 |
92 | 4 5 5 16 32 45 19 16 46 85 91 | decma2c | ⊢ ( ( ; 5 2 · ; ; 1 2 5 ) + ( 6 + ; 4 7 ) ) = ; ; ; 6 5 5 3 |
93 | 9cn | ⊢ 9 ∈ ℂ | |
94 | 9t5e45 | ⊢ ( 9 · 5 ) = ; 4 5 | |
95 | 93 54 94 | mulcomli | ⊢ ( 5 · 9 ) = ; 4 5 |
96 | 5p2e7 | ⊢ ( 5 + 2 ) = 7 | |
97 | 29 5 3 95 96 | decaddi | ⊢ ( ( 5 · 9 ) + 2 ) = ; 4 7 |
98 | 9t2e18 | ⊢ ( 9 · 2 ) = ; 1 8 | |
99 | 93 24 98 | mulcomli | ⊢ ( 2 · 9 ) = ; 1 8 |
100 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
101 | 8p8e16 | ⊢ ( 8 + 8 ) = ; 1 6 | |
102 | 2 14 14 99 100 11 101 | decaddci | ⊢ ( ( 2 · 9 ) + 8 ) = ; 2 6 |
103 | 5 3 14 59 27 11 3 97 102 | decrmac | ⊢ ( ( ; 5 2 · 9 ) + 8 ) = ; ; 4 7 6 |
104 | 6 27 11 14 1 28 19 11 31 92 103 | decma2c | ⊢ ( ( ; 5 2 · 𝑁 ) + ; 6 8 ) = ; ; ; ; 6 5 5 3 6 |
105 | 2exp16 | ⊢ ( 2 ↑ ; 1 6 ) = ; ; ; ; 6 5 5 3 6 | |
106 | eqid | ⊢ ( 2 ↑ 8 ) = ( 2 ↑ 8 ) | |
107 | eqid | ⊢ ( ( 2 ↑ 8 ) · ( 2 ↑ 8 ) ) = ( ( 2 ↑ 8 ) · ( 2 ↑ 8 ) ) | |
108 | 3 14 26 106 107 | numexp2x | ⊢ ( 2 ↑ ; 1 6 ) = ( ( 2 ↑ 8 ) · ( 2 ↑ 8 ) ) |
109 | 104 105 108 | 3eqtr2i | ⊢ ( ( ; 5 2 · 𝑁 ) + ; 6 8 ) = ( ( 2 ↑ 8 ) · ( 2 ↑ 8 ) ) |
110 | 9 10 14 20 21 15 22 26 109 | mod2xi | ⊢ ( ( 2 ↑ ; 1 6 ) mod 𝑁 ) = ( ; 6 8 mod 𝑁 ) |
111 | 6p1e7 | ⊢ ( 6 + 1 ) = 7 | |
112 | eqid | ⊢ ; 1 6 = ; 1 6 | |
113 | 2 11 111 112 | decsuc | ⊢ ( ; 1 6 + 1 ) = ; 1 7 |
114 | 18 | nn0cni | ⊢ ; ; 1 3 6 ∈ ℂ |
115 | 114 | addid2i | ⊢ ( 0 + ; ; 1 3 6 ) = ; ; 1 3 6 |
116 | 9 | nncni | ⊢ 𝑁 ∈ ℂ |
117 | 116 | mul02i | ⊢ ( 0 · 𝑁 ) = 0 |
118 | 117 | oveq1i | ⊢ ( ( 0 · 𝑁 ) + ; ; 1 3 6 ) = ( 0 + ; ; 1 3 6 ) |
119 | 6t2e12 | ⊢ ( 6 · 2 ) = ; 1 2 | |
120 | 2 3 52 119 | decsuc | ⊢ ( ( 6 · 2 ) + 1 ) = ; 1 3 |
121 | 3 11 14 28 11 2 120 25 | decmul1c | ⊢ ( ; 6 8 · 2 ) = ; ; 1 3 6 |
122 | 115 118 121 | 3eqtr4i | ⊢ ( ( 0 · 𝑁 ) + ; ; 1 3 6 ) = ( ; 6 8 · 2 ) |
123 | 9 10 12 13 15 18 110 113 122 | modxp1i | ⊢ ( ( 2 ↑ ; 1 7 ) mod 𝑁 ) = ( ; ; 1 3 6 mod 𝑁 ) |