Description: Lemma for 1259prm . Calculate a power mod. In decimal, we calculate 2 ^ 3 4 = ( 2 ^ 1 7 ) ^ 2 == 1 3 6 ^ 2 == 1 4 N + 8 7 0 . (Contributed by Mario Carneiro, 22-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015) (Proof shortened by AV, 15-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 1259prm.1 | ⊢ 𝑁 = ; ; ; 1 2 5 9 | |
Assertion | 1259lem2 | ⊢ ( ( 2 ↑ ; 3 4 ) mod 𝑁 ) = ( ; ; 8 7 0 mod 𝑁 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1259prm.1 | ⊢ 𝑁 = ; ; ; 1 2 5 9 | |
2 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
3 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
4 | 2 3 | deccl | ⊢ ; 1 2 ∈ ℕ0 |
5 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
6 | 4 5 | deccl | ⊢ ; ; 1 2 5 ∈ ℕ0 |
7 | 9nn | ⊢ 9 ∈ ℕ | |
8 | 6 7 | decnncl | ⊢ ; ; ; 1 2 5 9 ∈ ℕ |
9 | 1 8 | eqeltri | ⊢ 𝑁 ∈ ℕ |
10 | 2nn | ⊢ 2 ∈ ℕ | |
11 | 7nn0 | ⊢ 7 ∈ ℕ0 | |
12 | 2 11 | deccl | ⊢ ; 1 7 ∈ ℕ0 |
13 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
14 | 2 13 | deccl | ⊢ ; 1 4 ∈ ℕ0 |
15 | 14 | nn0zi | ⊢ ; 1 4 ∈ ℤ |
16 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
17 | 2 16 | deccl | ⊢ ; 1 3 ∈ ℕ0 |
18 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
19 | 17 18 | deccl | ⊢ ; ; 1 3 6 ∈ ℕ0 |
20 | 8nn0 | ⊢ 8 ∈ ℕ0 | |
21 | 20 11 | deccl | ⊢ ; 8 7 ∈ ℕ0 |
22 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
23 | 21 22 | deccl | ⊢ ; ; 8 7 0 ∈ ℕ0 |
24 | 1 | 1259lem1 | ⊢ ( ( 2 ↑ ; 1 7 ) mod 𝑁 ) = ( ; ; 1 3 6 mod 𝑁 ) |
25 | eqid | ⊢ ; 1 7 = ; 1 7 | |
26 | 2cn | ⊢ 2 ∈ ℂ | |
27 | 26 | mulid1i | ⊢ ( 2 · 1 ) = 2 |
28 | 27 | oveq1i | ⊢ ( ( 2 · 1 ) + 1 ) = ( 2 + 1 ) |
29 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
30 | 28 29 | eqtri | ⊢ ( ( 2 · 1 ) + 1 ) = 3 |
31 | 7cn | ⊢ 7 ∈ ℂ | |
32 | 7t2e14 | ⊢ ( 7 · 2 ) = ; 1 4 | |
33 | 31 26 32 | mulcomli | ⊢ ( 2 · 7 ) = ; 1 4 |
34 | 3 2 11 25 13 2 30 33 | decmul2c | ⊢ ( 2 · ; 1 7 ) = ; 3 4 |
35 | 9nn0 | ⊢ 9 ∈ ℕ0 | |
36 | eqid | ⊢ ; ; 8 7 0 = ; ; 8 7 0 | |
37 | eqid | ⊢ ; ; 1 2 5 = ; ; 1 2 5 | |
38 | eqid | ⊢ ; 8 7 = ; 8 7 | |
39 | eqid | ⊢ ; 1 2 = ; 1 2 | |
40 | 8p1e9 | ⊢ ( 8 + 1 ) = 9 | |
41 | 7p2e9 | ⊢ ( 7 + 2 ) = 9 | |
42 | 20 11 2 3 38 39 40 41 | decadd | ⊢ ( ; 8 7 + ; 1 2 ) = ; 9 9 |
43 | 9p7e16 | ⊢ ( 9 + 7 ) = ; 1 6 | |
44 | eqid | ⊢ ; 1 4 = ; 1 4 | |
45 | 3cn | ⊢ 3 ∈ ℂ | |
46 | ax-1cn | ⊢ 1 ∈ ℂ | |
47 | 3p1e4 | ⊢ ( 3 + 1 ) = 4 | |
48 | 45 46 47 | addcomli | ⊢ ( 1 + 3 ) = 4 |
49 | 13 | dec0h | ⊢ 4 = ; 0 4 |
50 | 48 49 | eqtri | ⊢ ( 1 + 3 ) = ; 0 4 |
51 | 46 | mulid1i | ⊢ ( 1 · 1 ) = 1 |
52 | 00id | ⊢ ( 0 + 0 ) = 0 | |
53 | 51 52 | oveq12i | ⊢ ( ( 1 · 1 ) + ( 0 + 0 ) ) = ( 1 + 0 ) |
54 | 46 | addid1i | ⊢ ( 1 + 0 ) = 1 |
55 | 53 54 | eqtri | ⊢ ( ( 1 · 1 ) + ( 0 + 0 ) ) = 1 |
56 | 4cn | ⊢ 4 ∈ ℂ | |
57 | 56 | mulid1i | ⊢ ( 4 · 1 ) = 4 |
58 | 57 | oveq1i | ⊢ ( ( 4 · 1 ) + 4 ) = ( 4 + 4 ) |
59 | 4p4e8 | ⊢ ( 4 + 4 ) = 8 | |
60 | 20 | dec0h | ⊢ 8 = ; 0 8 |
61 | 58 59 60 | 3eqtri | ⊢ ( ( 4 · 1 ) + 4 ) = ; 0 8 |
62 | 2 13 22 13 44 50 2 20 22 55 61 | decmac | ⊢ ( ( ; 1 4 · 1 ) + ( 1 + 3 ) ) = ; 1 8 |
63 | 18 | dec0h | ⊢ 6 = ; 0 6 |
64 | 26 | mulid2i | ⊢ ( 1 · 2 ) = 2 |
65 | 46 | addid2i | ⊢ ( 0 + 1 ) = 1 |
66 | 64 65 | oveq12i | ⊢ ( ( 1 · 2 ) + ( 0 + 1 ) ) = ( 2 + 1 ) |
67 | 66 29 | eqtri | ⊢ ( ( 1 · 2 ) + ( 0 + 1 ) ) = 3 |
68 | 4t2e8 | ⊢ ( 4 · 2 ) = 8 | |
69 | 68 | oveq1i | ⊢ ( ( 4 · 2 ) + 6 ) = ( 8 + 6 ) |
70 | 8p6e14 | ⊢ ( 8 + 6 ) = ; 1 4 | |
71 | 69 70 | eqtri | ⊢ ( ( 4 · 2 ) + 6 ) = ; 1 4 |
72 | 2 13 22 18 44 63 3 13 2 67 71 | decmac | ⊢ ( ( ; 1 4 · 2 ) + 6 ) = ; 3 4 |
73 | 2 3 2 18 39 43 14 13 16 62 72 | decma2c | ⊢ ( ( ; 1 4 · ; 1 2 ) + ( 9 + 7 ) ) = ; ; 1 8 4 |
74 | 35 | dec0h | ⊢ 9 = ; 0 9 |
75 | 5cn | ⊢ 5 ∈ ℂ | |
76 | 75 | mulid2i | ⊢ ( 1 · 5 ) = 5 |
77 | 26 | addid2i | ⊢ ( 0 + 2 ) = 2 |
78 | 76 77 | oveq12i | ⊢ ( ( 1 · 5 ) + ( 0 + 2 ) ) = ( 5 + 2 ) |
79 | 5p2e7 | ⊢ ( 5 + 2 ) = 7 | |
80 | 78 79 | eqtri | ⊢ ( ( 1 · 5 ) + ( 0 + 2 ) ) = 7 |
81 | 5t4e20 | ⊢ ( 5 · 4 ) = ; 2 0 | |
82 | 75 56 81 | mulcomli | ⊢ ( 4 · 5 ) = ; 2 0 |
83 | 9cn | ⊢ 9 ∈ ℂ | |
84 | 83 | addid2i | ⊢ ( 0 + 9 ) = 9 |
85 | 3 22 35 82 84 | decaddi | ⊢ ( ( 4 · 5 ) + 9 ) = ; 2 9 |
86 | 2 13 22 35 44 74 5 35 3 80 85 | decmac | ⊢ ( ( ; 1 4 · 5 ) + 9 ) = ; 7 9 |
87 | 4 5 35 35 37 42 14 35 11 73 86 | decma2c | ⊢ ( ( ; 1 4 · ; ; 1 2 5 ) + ( ; 8 7 + ; 1 2 ) ) = ; ; ; 1 8 4 9 |
88 | 83 | mulid2i | ⊢ ( 1 · 9 ) = 9 |
89 | 88 | oveq1i | ⊢ ( ( 1 · 9 ) + 3 ) = ( 9 + 3 ) |
90 | 9p3e12 | ⊢ ( 9 + 3 ) = ; 1 2 | |
91 | 89 90 | eqtri | ⊢ ( ( 1 · 9 ) + 3 ) = ; 1 2 |
92 | 9t4e36 | ⊢ ( 9 · 4 ) = ; 3 6 | |
93 | 83 56 92 | mulcomli | ⊢ ( 4 · 9 ) = ; 3 6 |
94 | 35 2 13 44 18 16 91 93 | decmul1c | ⊢ ( ; 1 4 · 9 ) = ; ; 1 2 6 |
95 | 94 | oveq1i | ⊢ ( ( ; 1 4 · 9 ) + 0 ) = ( ; ; 1 2 6 + 0 ) |
96 | 4 18 | deccl | ⊢ ; ; 1 2 6 ∈ ℕ0 |
97 | 96 | nn0cni | ⊢ ; ; 1 2 6 ∈ ℂ |
98 | 97 | addid1i | ⊢ ( ; ; 1 2 6 + 0 ) = ; ; 1 2 6 |
99 | 95 98 | eqtri | ⊢ ( ( ; 1 4 · 9 ) + 0 ) = ; ; 1 2 6 |
100 | 6 35 21 22 1 36 14 18 4 87 99 | decma2c | ⊢ ( ( ; 1 4 · 𝑁 ) + ; ; 8 7 0 ) = ; ; ; ; 1 8 4 9 6 |
101 | eqid | ⊢ ; ; 1 3 6 = ; ; 1 3 6 | |
102 | 20 2 | deccl | ⊢ ; 8 1 ∈ ℕ0 |
103 | eqid | ⊢ ; 1 3 = ; 1 3 | |
104 | eqid | ⊢ ; 8 1 = ; 8 1 | |
105 | 13 22 | deccl | ⊢ ; 4 0 ∈ ℕ0 |
106 | eqid | ⊢ ; 4 0 = ; 4 0 | |
107 | 56 | addid2i | ⊢ ( 0 + 4 ) = 4 |
108 | 8cn | ⊢ 8 ∈ ℂ | |
109 | 108 | addid1i | ⊢ ( 8 + 0 ) = 8 |
110 | 22 20 13 22 60 106 107 109 | decadd | ⊢ ( 8 + ; 4 0 ) = ; 4 8 |
111 | 4p1e5 | ⊢ ( 4 + 1 ) = 5 | |
112 | 5 | dec0h | ⊢ 5 = ; 0 5 |
113 | 111 112 | eqtri | ⊢ ( 4 + 1 ) = ; 0 5 |
114 | 45 | mulid1i | ⊢ ( 3 · 1 ) = 3 |
115 | 114 | oveq1i | ⊢ ( ( 3 · 1 ) + 5 ) = ( 3 + 5 ) |
116 | 5p3e8 | ⊢ ( 5 + 3 ) = 8 | |
117 | 75 45 116 | addcomli | ⊢ ( 3 + 5 ) = 8 |
118 | 115 117 60 | 3eqtri | ⊢ ( ( 3 · 1 ) + 5 ) = ; 0 8 |
119 | 2 16 22 5 103 113 2 20 22 55 118 | decmac | ⊢ ( ( ; 1 3 · 1 ) + ( 4 + 1 ) ) = ; 1 8 |
120 | 6cn | ⊢ 6 ∈ ℂ | |
121 | 120 | mulid1i | ⊢ ( 6 · 1 ) = 6 |
122 | 121 | oveq1i | ⊢ ( ( 6 · 1 ) + 8 ) = ( 6 + 8 ) |
123 | 108 120 70 | addcomli | ⊢ ( 6 + 8 ) = ; 1 4 |
124 | 122 123 | eqtri | ⊢ ( ( 6 · 1 ) + 8 ) = ; 1 4 |
125 | 17 18 13 20 101 110 2 13 2 119 124 | decmac | ⊢ ( ( ; ; 1 3 6 · 1 ) + ( 8 + ; 4 0 ) ) = ; ; 1 8 4 |
126 | 2 | dec0h | ⊢ 1 = ; 0 1 |
127 | 65 126 | eqtri | ⊢ ( 0 + 1 ) = ; 0 1 |
128 | 45 | mulid2i | ⊢ ( 1 · 3 ) = 3 |
129 | 128 65 | oveq12i | ⊢ ( ( 1 · 3 ) + ( 0 + 1 ) ) = ( 3 + 1 ) |
130 | 129 47 | eqtri | ⊢ ( ( 1 · 3 ) + ( 0 + 1 ) ) = 4 |
131 | 3t3e9 | ⊢ ( 3 · 3 ) = 9 | |
132 | 131 | oveq1i | ⊢ ( ( 3 · 3 ) + 1 ) = ( 9 + 1 ) |
133 | 9p1e10 | ⊢ ( 9 + 1 ) = ; 1 0 | |
134 | 132 133 | eqtri | ⊢ ( ( 3 · 3 ) + 1 ) = ; 1 0 |
135 | 2 16 22 2 103 127 16 22 2 130 134 | decmac | ⊢ ( ( ; 1 3 · 3 ) + ( 0 + 1 ) ) = ; 4 0 |
136 | 6t3e18 | ⊢ ( 6 · 3 ) = ; 1 8 | |
137 | 2 20 2 136 40 | decaddi | ⊢ ( ( 6 · 3 ) + 1 ) = ; 1 9 |
138 | 17 18 22 2 101 126 16 35 2 135 137 | decmac | ⊢ ( ( ; ; 1 3 6 · 3 ) + 1 ) = ; ; 4 0 9 |
139 | 2 16 20 2 103 104 19 35 105 125 138 | decma2c | ⊢ ( ( ; ; 1 3 6 · ; 1 3 ) + ; 8 1 ) = ; ; ; 1 8 4 9 |
140 | 16 | dec0h | ⊢ 3 = ; 0 3 |
141 | 120 | mulid2i | ⊢ ( 1 · 6 ) = 6 |
142 | 141 77 | oveq12i | ⊢ ( ( 1 · 6 ) + ( 0 + 2 ) ) = ( 6 + 2 ) |
143 | 6p2e8 | ⊢ ( 6 + 2 ) = 8 | |
144 | 142 143 | eqtri | ⊢ ( ( 1 · 6 ) + ( 0 + 2 ) ) = 8 |
145 | 120 45 136 | mulcomli | ⊢ ( 3 · 6 ) = ; 1 8 |
146 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
147 | 8p3e11 | ⊢ ( 8 + 3 ) = ; 1 1 | |
148 | 2 20 16 145 146 2 147 | decaddci | ⊢ ( ( 3 · 6 ) + 3 ) = ; 2 1 |
149 | 2 16 22 16 103 140 18 2 3 144 148 | decmac | ⊢ ( ( ; 1 3 · 6 ) + 3 ) = ; 8 1 |
150 | 6t6e36 | ⊢ ( 6 · 6 ) = ; 3 6 | |
151 | 18 17 18 101 18 16 149 150 | decmul1c | ⊢ ( ; ; 1 3 6 · 6 ) = ; ; 8 1 6 |
152 | 19 17 18 101 18 102 139 151 | decmul2c | ⊢ ( ; ; 1 3 6 · ; ; 1 3 6 ) = ; ; ; ; 1 8 4 9 6 |
153 | 100 152 | eqtr4i | ⊢ ( ( ; 1 4 · 𝑁 ) + ; ; 8 7 0 ) = ( ; ; 1 3 6 · ; ; 1 3 6 ) |
154 | 9 10 12 15 19 23 24 34 153 | mod2xi | ⊢ ( ( 2 ↑ ; 3 4 ) mod 𝑁 ) = ( ; ; 8 7 0 mod 𝑁 ) |