Metamath Proof Explorer


Theorem 1259lem3

Description: Lemma for 1259prm . Calculate a power mod. In decimal, we calculate 2 ^ 3 8 = 2 ^ 3 4 x. 2 ^ 4 == 8 7 0 x. 1 6 = 1 1 N + 7 1 and 2 ^ 7 6 = ( 2 ^ 3 4 ) ^ 2 == 7 1 ^ 2 = 4 N + 5 == 5 . (Contributed by Mario Carneiro, 22-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015) (Proof shortened by AV, 16-Sep-2021)

Ref Expression
Hypothesis 1259prm.1 𝑁 = 1 2 5 9
Assertion 1259lem3 ( ( 2 ↑ 7 6 ) mod 𝑁 ) = ( 5 mod 𝑁 )

Proof

Step Hyp Ref Expression
1 1259prm.1 𝑁 = 1 2 5 9
2 1nn0 1 ∈ ℕ0
3 2nn0 2 ∈ ℕ0
4 2 3 deccl 1 2 ∈ ℕ0
5 5nn0 5 ∈ ℕ0
6 4 5 deccl 1 2 5 ∈ ℕ0
7 9nn 9 ∈ ℕ
8 6 7 decnncl 1 2 5 9 ∈ ℕ
9 1 8 eqeltri 𝑁 ∈ ℕ
10 2nn 2 ∈ ℕ
11 3nn0 3 ∈ ℕ0
12 8nn0 8 ∈ ℕ0
13 11 12 deccl 3 8 ∈ ℕ0
14 4z 4 ∈ ℤ
15 7nn0 7 ∈ ℕ0
16 15 2 deccl 7 1 ∈ ℕ0
17 4nn0 4 ∈ ℕ0
18 11 17 deccl 3 4 ∈ ℕ0
19 2 2 deccl 1 1 ∈ ℕ0
20 19 nn0zi 1 1 ∈ ℤ
21 12 15 deccl 8 7 ∈ ℕ0
22 0nn0 0 ∈ ℕ0
23 21 22 deccl 8 7 0 ∈ ℕ0
24 6nn0 6 ∈ ℕ0
25 2 24 deccl 1 6 ∈ ℕ0
26 1 1259lem2 ( ( 2 ↑ 3 4 ) mod 𝑁 ) = ( 8 7 0 mod 𝑁 )
27 2exp4 ( 2 ↑ 4 ) = 1 6
28 27 oveq1i ( ( 2 ↑ 4 ) mod 𝑁 ) = ( 1 6 mod 𝑁 )
29 eqid 3 4 = 3 4
30 4p4e8 ( 4 + 4 ) = 8
31 11 17 17 29 30 decaddi ( 3 4 + 4 ) = 3 8
32 9nn0 9 ∈ ℕ0
33 eqid 7 1 = 7 1
34 10nn0 1 0 ∈ ℕ0
35 eqid 1 1 = 1 1
36 34 nn0cni 1 0 ∈ ℂ
37 7cn 7 ∈ ℂ
38 dec10p ( 1 0 + 7 ) = 1 7
39 36 37 38 addcomli ( 7 + 1 0 ) = 1 7
40 2 11 deccl 1 3 ∈ ℕ0
41 6 nn0cni 1 2 5 ∈ ℂ
42 41 mulid2i ( 1 · 1 2 5 ) = 1 2 5
43 2 dec0h 1 = 0 1
44 eqid 1 3 = 1 3
45 0p1e1 ( 0 + 1 ) = 1
46 3cn 3 ∈ ℂ
47 ax-1cn 1 ∈ ℂ
48 3p1e4 ( 3 + 1 ) = 4
49 46 47 48 addcomli ( 1 + 3 ) = 4
50 22 2 2 11 43 44 45 49 decadd ( 1 + 1 3 ) = 1 4
51 2p1e3 ( 2 + 1 ) = 3
52 eqid 1 2 = 1 2
53 2 3 51 52 decsuc ( 1 2 + 1 ) = 1 3
54 5p4e9 ( 5 + 4 ) = 9
55 4 5 2 17 42 50 53 54 decadd ( ( 1 · 1 2 5 ) + ( 1 + 1 3 ) ) = 1 3 9
56 5cn 5 ∈ ℂ
57 7p5e12 ( 7 + 5 ) = 1 2
58 37 56 57 addcomli ( 5 + 7 ) = 1 2
59 4 5 15 42 53 3 58 decaddci ( ( 1 · 1 2 5 ) + 7 ) = 1 3 2
60 2 2 2 15 35 39 6 3 40 55 59 decmac ( ( 1 1 · 1 2 5 ) + ( 7 + 1 0 ) ) = 1 3 9 2
61 9p1e10 ( 9 + 1 ) = 1 0
62 9cn 9 ∈ ℂ
63 19 nn0cni 1 1 ∈ ℂ
64 9t11e99 ( 9 · 1 1 ) = 9 9
65 62 63 64 mulcomli ( 1 1 · 9 ) = 9 9
66 32 61 65 decsucc ( ( 1 1 · 9 ) + 1 ) = 1 0 0
67 6 32 15 2 1 33 19 22 34 60 66 decma2c ( ( 1 1 · 𝑁 ) + 7 1 ) = 1 3 9 2 0
68 eqid 1 6 = 1 6
69 5 3 deccl 5 2 ∈ ℕ0
70 69 3 deccl 5 2 2 ∈ ℕ0
71 eqid 8 7 0 = 8 7 0
72 eqid 5 2 2 = 5 2 2
73 eqid 8 7 = 8 7
74 69 nn0cni 5 2 ∈ ℂ
75 74 addid1i ( 5 2 + 0 ) = 5 2
76 8cn 8 ∈ ℂ
77 76 mulid1i ( 8 · 1 ) = 8
78 56 addid1i ( 5 + 0 ) = 5
79 77 78 oveq12i ( ( 8 · 1 ) + ( 5 + 0 ) ) = ( 8 + 5 )
80 8p5e13 ( 8 + 5 ) = 1 3
81 79 80 eqtri ( ( 8 · 1 ) + ( 5 + 0 ) ) = 1 3
82 37 mulid1i ( 7 · 1 ) = 7
83 82 oveq1i ( ( 7 · 1 ) + 2 ) = ( 7 + 2 )
84 7p2e9 ( 7 + 2 ) = 9
85 32 dec0h 9 = 0 9
86 83 84 85 3eqtri ( ( 7 · 1 ) + 2 ) = 0 9
87 12 15 5 3 73 75 2 32 22 81 86 decmac ( ( 8 7 · 1 ) + ( 5 2 + 0 ) ) = 1 3 9
88 47 mul02i ( 0 · 1 ) = 0
89 88 oveq1i ( ( 0 · 1 ) + 2 ) = ( 0 + 2 )
90 2cn 2 ∈ ℂ
91 90 addid2i ( 0 + 2 ) = 2
92 3 dec0h 2 = 0 2
93 89 91 92 3eqtri ( ( 0 · 1 ) + 2 ) = 0 2
94 21 22 69 3 71 72 2 3 22 87 93 decmac ( ( 8 7 0 · 1 ) + 5 2 2 ) = 1 3 9 2
95 8t6e48 ( 8 · 6 ) = 4 8
96 4p1e5 ( 4 + 1 ) = 5
97 8p4e12 ( 8 + 4 ) = 1 2
98 17 12 17 95 96 3 97 decaddci ( ( 8 · 6 ) + 4 ) = 5 2
99 7t6e42 ( 7 · 6 ) = 4 2
100 24 12 15 73 3 17 98 99 decmul1c ( 8 7 · 6 ) = 5 2 2
101 6cn 6 ∈ ℂ
102 101 mul02i ( 0 · 6 ) = 0
103 24 21 22 71 100 102 decmul1 ( 8 7 0 · 6 ) = 5 2 2 0
104 23 2 24 68 22 70 94 103 decmul2c ( 8 7 0 · 1 6 ) = 1 3 9 2 0
105 67 104 eqtr4i ( ( 1 1 · 𝑁 ) + 7 1 ) = ( 8 7 0 · 1 6 )
106 9 10 18 20 23 16 17 25 26 28 31 105 modxai ( ( 2 ↑ 3 8 ) mod 𝑁 ) = ( 7 1 mod 𝑁 )
107 eqid 3 8 = 3 8
108 3t2e6 ( 3 · 2 ) = 6
109 46 90 108 mulcomli ( 2 · 3 ) = 6
110 109 oveq1i ( ( 2 · 3 ) + 1 ) = ( 6 + 1 )
111 6p1e7 ( 6 + 1 ) = 7
112 110 111 eqtri ( ( 2 · 3 ) + 1 ) = 7
113 8t2e16 ( 8 · 2 ) = 1 6
114 76 90 113 mulcomli ( 2 · 8 ) = 1 6
115 3 11 12 107 24 2 112 114 decmul2c ( 2 · 3 8 ) = 7 6
116 5 dec0h 5 = 0 5
117 eqid 1 2 5 = 1 2 5
118 4cn 4 ∈ ℂ
119 118 addid2i ( 0 + 4 ) = 4
120 17 dec0h 4 = 0 4
121 119 120 eqtri ( 0 + 4 ) = 0 4
122 91 92 eqtri ( 0 + 2 ) = 0 2
123 118 mulid1i ( 4 · 1 ) = 4
124 123 45 oveq12i ( ( 4 · 1 ) + ( 0 + 1 ) ) = ( 4 + 1 )
125 124 96 eqtri ( ( 4 · 1 ) + ( 0 + 1 ) ) = 5
126 4t2e8 ( 4 · 2 ) = 8
127 126 oveq1i ( ( 4 · 2 ) + 2 ) = ( 8 + 2 )
128 8p2e10 ( 8 + 2 ) = 1 0
129 127 128 eqtri ( ( 4 · 2 ) + 2 ) = 1 0
130 2 3 22 3 52 122 17 22 2 125 129 decma2c ( ( 4 · 1 2 ) + ( 0 + 2 ) ) = 5 0
131 5t4e20 ( 5 · 4 ) = 2 0
132 56 118 131 mulcomli ( 4 · 5 ) = 2 0
133 3 22 17 132 119 decaddi ( ( 4 · 5 ) + 4 ) = 2 4
134 4 5 22 17 117 121 17 17 3 130 133 decma2c ( ( 4 · 1 2 5 ) + ( 0 + 4 ) ) = 5 0 4
135 9t4e36 ( 9 · 4 ) = 3 6
136 62 118 135 mulcomli ( 4 · 9 ) = 3 6
137 6p5e11 ( 6 + 5 ) = 1 1
138 11 24 5 136 48 2 137 decaddci ( ( 4 · 9 ) + 5 ) = 4 1
139 6 32 22 5 1 116 17 2 17 134 138 decma2c ( ( 4 · 𝑁 ) + 5 ) = 5 0 4 1
140 7t7e49 ( 7 · 7 ) = 4 9
141 17 96 140 decsucc ( ( 7 · 7 ) + 1 ) = 5 0
142 37 mulid2i ( 1 · 7 ) = 7
143 142 oveq1i ( ( 1 · 7 ) + 7 ) = ( 7 + 7 )
144 7p7e14 ( 7 + 7 ) = 1 4
145 143 144 eqtri ( ( 1 · 7 ) + 7 ) = 1 4
146 15 2 15 33 15 17 2 141 145 decrmac ( ( 7 1 · 7 ) + 7 ) = 5 0 4
147 16 nn0cni 7 1 ∈ ℂ
148 147 mulid1i ( 7 1 · 1 ) = 7 1
149 16 15 2 33 2 15 146 148 decmul2c ( 7 1 · 7 1 ) = 5 0 4 1
150 139 149 eqtr4i ( ( 4 · 𝑁 ) + 5 ) = ( 7 1 · 7 1 )
151 9 10 13 14 16 5 106 115 150 mod2xi ( ( 2 ↑ 7 6 ) mod 𝑁 ) = ( 5 mod 𝑁 )