Description: Lemma for 1259prm . Calculate a power mod. In decimal, we calculate 2 ^ 3 0 6 = ( 2 ^ 7 6 ) ^ 4 x. 4 == 5 ^ 4 x. 4 = 2 N - 1 8 , 2 ^ 6 1 2 = ( 2 ^ 3 0 6 ) ^ 2 == 1 8 ^ 2 = 3 2 4 , 2 ^ 6 2 9 = 2 ^ 6 1 2 x. 2 ^ 1 7 == 3 2 4 x. 1 3 6 = 3 5 N - 1 and finally 2 ^ ( N - 1 ) = ( 2 ^ 6 2 9 ) ^ 2 == 1 ^ 2 = 1 . (Contributed by Mario Carneiro, 22-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015) (Proof shortened by AV, 16-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 1259prm.1 | ⊢ 𝑁 = ; ; ; 1 2 5 9 | |
Assertion | 1259lem4 | ⊢ ( ( 2 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = ( 1 mod 𝑁 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1259prm.1 | ⊢ 𝑁 = ; ; ; 1 2 5 9 | |
2 | 2nn | ⊢ 2 ∈ ℕ | |
3 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
4 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
5 | 3 4 | deccl | ⊢ ; 6 2 ∈ ℕ0 |
6 | 9nn0 | ⊢ 9 ∈ ℕ0 | |
7 | 5 6 | deccl | ⊢ ; ; 6 2 9 ∈ ℕ0 |
8 | 0z | ⊢ 0 ∈ ℤ | |
9 | 1nn | ⊢ 1 ∈ ℕ | |
10 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
11 | 10 4 | deccl | ⊢ ; 1 2 ∈ ℕ0 |
12 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
13 | 11 12 | deccl | ⊢ ; ; 1 2 5 ∈ ℕ0 |
14 | 8nn0 | ⊢ 8 ∈ ℕ0 | |
15 | 13 14 | deccl | ⊢ ; ; ; 1 2 5 8 ∈ ℕ0 |
16 | 15 | nn0cni | ⊢ ; ; ; 1 2 5 8 ∈ ℂ |
17 | ax-1cn | ⊢ 1 ∈ ℂ | |
18 | 8p1e9 | ⊢ ( 8 + 1 ) = 9 | |
19 | eqid | ⊢ ; ; ; 1 2 5 8 = ; ; ; 1 2 5 8 | |
20 | 13 14 18 19 | decsuc | ⊢ ( ; ; ; 1 2 5 8 + 1 ) = ; ; ; 1 2 5 9 |
21 | 1 20 | eqtr4i | ⊢ 𝑁 = ( ; ; ; 1 2 5 8 + 1 ) |
22 | 16 17 21 | mvrraddi | ⊢ ( 𝑁 − 1 ) = ; ; ; 1 2 5 8 |
23 | 22 15 | eqeltri | ⊢ ( 𝑁 − 1 ) ∈ ℕ0 |
24 | 9nn | ⊢ 9 ∈ ℕ | |
25 | 13 24 | decnncl | ⊢ ; ; ; 1 2 5 9 ∈ ℕ |
26 | 1 25 | eqeltri | ⊢ 𝑁 ∈ ℕ |
27 | 3 10 | deccl | ⊢ ; 6 1 ∈ ℕ0 |
28 | 27 4 | deccl | ⊢ ; ; 6 1 2 ∈ ℕ0 |
29 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
30 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
31 | 29 30 | deccl | ⊢ ; 3 4 ∈ ℕ0 |
32 | 31 | nn0zi | ⊢ ; 3 4 ∈ ℤ |
33 | 29 4 | deccl | ⊢ ; 3 2 ∈ ℕ0 |
34 | 33 30 | deccl | ⊢ ; ; 3 2 4 ∈ ℕ0 |
35 | 7nn0 | ⊢ 7 ∈ ℕ0 | |
36 | 10 35 | deccl | ⊢ ; 1 7 ∈ ℕ0 |
37 | 10 29 | deccl | ⊢ ; 1 3 ∈ ℕ0 |
38 | 37 3 | deccl | ⊢ ; ; 1 3 6 ∈ ℕ0 |
39 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
40 | 29 39 | deccl | ⊢ ; 3 0 ∈ ℕ0 |
41 | 40 3 | deccl | ⊢ ; ; 3 0 6 ∈ ℕ0 |
42 | 8nn | ⊢ 8 ∈ ℕ | |
43 | 10 42 | decnncl | ⊢ ; 1 8 ∈ ℕ |
44 | 11 30 | deccl | ⊢ ; ; 1 2 4 ∈ ℕ0 |
45 | 44 10 | deccl | ⊢ ; ; ; 1 2 4 1 ∈ ℕ0 |
46 | 10 12 | deccl | ⊢ ; 1 5 ∈ ℕ0 |
47 | 46 29 | deccl | ⊢ ; ; 1 5 3 ∈ ℕ0 |
48 | 1z | ⊢ 1 ∈ ℤ | |
49 | 12 39 | deccl | ⊢ ; 5 0 ∈ ℕ0 |
50 | 46 4 | deccl | ⊢ ; ; 1 5 2 ∈ ℕ0 |
51 | 4 12 | deccl | ⊢ ; 2 5 ∈ ℕ0 |
52 | 35 3 | deccl | ⊢ ; 7 6 ∈ ℕ0 |
53 | 1 | 1259lem3 | ⊢ ( ( 2 ↑ ; 7 6 ) mod 𝑁 ) = ( 5 mod 𝑁 ) |
54 | eqid | ⊢ ; 7 6 = ; 7 6 | |
55 | 4p1e5 | ⊢ ( 4 + 1 ) = 5 | |
56 | 7cn | ⊢ 7 ∈ ℂ | |
57 | 2cn | ⊢ 2 ∈ ℂ | |
58 | 7t2e14 | ⊢ ( 7 · 2 ) = ; 1 4 | |
59 | 56 57 58 | mulcomli | ⊢ ( 2 · 7 ) = ; 1 4 |
60 | 10 30 55 59 | decsuc | ⊢ ( ( 2 · 7 ) + 1 ) = ; 1 5 |
61 | 6cn | ⊢ 6 ∈ ℂ | |
62 | 6t2e12 | ⊢ ( 6 · 2 ) = ; 1 2 | |
63 | 61 57 62 | mulcomli | ⊢ ( 2 · 6 ) = ; 1 2 |
64 | 4 35 3 54 4 10 60 63 | decmul2c | ⊢ ( 2 · ; 7 6 ) = ; ; 1 5 2 |
65 | 51 | nn0cni | ⊢ ; 2 5 ∈ ℂ |
66 | 65 | addid2i | ⊢ ( 0 + ; 2 5 ) = ; 2 5 |
67 | 26 | nncni | ⊢ 𝑁 ∈ ℂ |
68 | 67 | mul02i | ⊢ ( 0 · 𝑁 ) = 0 |
69 | 68 | oveq1i | ⊢ ( ( 0 · 𝑁 ) + ; 2 5 ) = ( 0 + ; 2 5 ) |
70 | 5t5e25 | ⊢ ( 5 · 5 ) = ; 2 5 | |
71 | 66 69 70 | 3eqtr4i | ⊢ ( ( 0 · 𝑁 ) + ; 2 5 ) = ( 5 · 5 ) |
72 | 26 2 52 8 12 51 53 64 71 | mod2xi | ⊢ ( ( 2 ↑ ; ; 1 5 2 ) mod 𝑁 ) = ( ; 2 5 mod 𝑁 ) |
73 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
74 | eqid | ⊢ ; ; 1 5 2 = ; ; 1 5 2 | |
75 | 46 4 73 74 | decsuc | ⊢ ( ; ; 1 5 2 + 1 ) = ; ; 1 5 3 |
76 | 49 | nn0cni | ⊢ ; 5 0 ∈ ℂ |
77 | 76 | addid2i | ⊢ ( 0 + ; 5 0 ) = ; 5 0 |
78 | 68 | oveq1i | ⊢ ( ( 0 · 𝑁 ) + ; 5 0 ) = ( 0 + ; 5 0 ) |
79 | eqid | ⊢ ; 2 5 = ; 2 5 | |
80 | 2t2e4 | ⊢ ( 2 · 2 ) = 4 | |
81 | 80 | oveq1i | ⊢ ( ( 2 · 2 ) + 1 ) = ( 4 + 1 ) |
82 | 81 55 | eqtri | ⊢ ( ( 2 · 2 ) + 1 ) = 5 |
83 | 5t2e10 | ⊢ ( 5 · 2 ) = ; 1 0 | |
84 | 4 4 12 79 39 10 82 83 | decmul1c | ⊢ ( ; 2 5 · 2 ) = ; 5 0 |
85 | 77 78 84 | 3eqtr4i | ⊢ ( ( 0 · 𝑁 ) + ; 5 0 ) = ( ; 2 5 · 2 ) |
86 | 26 2 50 8 51 49 72 75 85 | modxp1i | ⊢ ( ( 2 ↑ ; ; 1 5 3 ) mod 𝑁 ) = ( ; 5 0 mod 𝑁 ) |
87 | eqid | ⊢ ; ; 1 5 3 = ; ; 1 5 3 | |
88 | eqid | ⊢ ; 1 5 = ; 1 5 | |
89 | 57 | mulid1i | ⊢ ( 2 · 1 ) = 2 |
90 | 89 | oveq1i | ⊢ ( ( 2 · 1 ) + 1 ) = ( 2 + 1 ) |
91 | 90 73 | eqtri | ⊢ ( ( 2 · 1 ) + 1 ) = 3 |
92 | 5cn | ⊢ 5 ∈ ℂ | |
93 | 92 57 83 | mulcomli | ⊢ ( 2 · 5 ) = ; 1 0 |
94 | 4 10 12 88 39 10 91 93 | decmul2c | ⊢ ( 2 · ; 1 5 ) = ; 3 0 |
95 | 94 | oveq1i | ⊢ ( ( 2 · ; 1 5 ) + 0 ) = ( ; 3 0 + 0 ) |
96 | 40 | nn0cni | ⊢ ; 3 0 ∈ ℂ |
97 | 96 | addid1i | ⊢ ( ; 3 0 + 0 ) = ; 3 0 |
98 | 95 97 | eqtri | ⊢ ( ( 2 · ; 1 5 ) + 0 ) = ; 3 0 |
99 | 3cn | ⊢ 3 ∈ ℂ | |
100 | 3t2e6 | ⊢ ( 3 · 2 ) = 6 | |
101 | 99 57 100 | mulcomli | ⊢ ( 2 · 3 ) = 6 |
102 | 3 | dec0h | ⊢ 6 = ; 0 6 |
103 | 101 102 | eqtri | ⊢ ( 2 · 3 ) = ; 0 6 |
104 | 4 46 29 87 3 39 98 103 | decmul2c | ⊢ ( 2 · ; ; 1 5 3 ) = ; ; 3 0 6 |
105 | 67 | mulid2i | ⊢ ( 1 · 𝑁 ) = 𝑁 |
106 | 105 1 | eqtri | ⊢ ( 1 · 𝑁 ) = ; ; ; 1 2 5 9 |
107 | eqid | ⊢ ; ; ; 1 2 4 1 = ; ; ; 1 2 4 1 | |
108 | 4 30 | deccl | ⊢ ; 2 4 ∈ ℕ0 |
109 | eqid | ⊢ ; 2 4 = ; 2 4 | |
110 | 4 30 55 109 | decsuc | ⊢ ( ; 2 4 + 1 ) = ; 2 5 |
111 | eqid | ⊢ ; ; 1 2 5 = ; ; 1 2 5 | |
112 | eqid | ⊢ ; ; 1 2 4 = ; ; 1 2 4 | |
113 | eqid | ⊢ ; 1 2 = ; 1 2 | |
114 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
115 | 2p2e4 | ⊢ ( 2 + 2 ) = 4 | |
116 | 10 4 10 4 113 113 114 115 | decadd | ⊢ ( ; 1 2 + ; 1 2 ) = ; 2 4 |
117 | 5p4e9 | ⊢ ( 5 + 4 ) = 9 | |
118 | 11 12 11 30 111 112 116 117 | decadd | ⊢ ( ; ; 1 2 5 + ; ; 1 2 4 ) = ; ; 2 4 9 |
119 | 108 110 118 | decsucc | ⊢ ( ( ; ; 1 2 5 + ; ; 1 2 4 ) + 1 ) = ; ; 2 5 0 |
120 | 9p1e10 | ⊢ ( 9 + 1 ) = ; 1 0 | |
121 | 13 6 44 10 106 107 119 120 | decaddc2 | ⊢ ( ( 1 · 𝑁 ) + ; ; ; 1 2 4 1 ) = ; ; ; 2 5 0 0 |
122 | eqid | ⊢ ; 5 0 = ; 5 0 | |
123 | 92 | mul02i | ⊢ ( 0 · 5 ) = 0 |
124 | 12 12 39 122 70 123 | decmul1 | ⊢ ( ; 5 0 · 5 ) = ; ; 2 5 0 |
125 | 124 | oveq1i | ⊢ ( ( ; 5 0 · 5 ) + 0 ) = ( ; ; 2 5 0 + 0 ) |
126 | 51 39 | deccl | ⊢ ; ; 2 5 0 ∈ ℕ0 |
127 | 126 | nn0cni | ⊢ ; ; 2 5 0 ∈ ℂ |
128 | 127 | addid1i | ⊢ ( ; ; 2 5 0 + 0 ) = ; ; 2 5 0 |
129 | 125 128 | eqtri | ⊢ ( ( ; 5 0 · 5 ) + 0 ) = ; ; 2 5 0 |
130 | 76 | mul01i | ⊢ ( ; 5 0 · 0 ) = 0 |
131 | 39 | dec0h | ⊢ 0 = ; 0 0 |
132 | 130 131 | eqtri | ⊢ ( ; 5 0 · 0 ) = ; 0 0 |
133 | 49 12 39 122 39 39 129 132 | decmul2c | ⊢ ( ; 5 0 · ; 5 0 ) = ; ; ; 2 5 0 0 |
134 | 121 133 | eqtr4i | ⊢ ( ( 1 · 𝑁 ) + ; ; ; 1 2 4 1 ) = ( ; 5 0 · ; 5 0 ) |
135 | 26 2 47 48 49 45 86 104 134 | mod2xi | ⊢ ( ( 2 ↑ ; ; 3 0 6 ) mod 𝑁 ) = ( ; ; ; 1 2 4 1 mod 𝑁 ) |
136 | eqid | ⊢ ; ; 3 0 6 = ; ; 3 0 6 | |
137 | eqid | ⊢ ; 3 0 = ; 3 0 | |
138 | 10 | dec0h | ⊢ 1 = ; 0 1 |
139 | 00id | ⊢ ( 0 + 0 ) = 0 | |
140 | 101 139 | oveq12i | ⊢ ( ( 2 · 3 ) + ( 0 + 0 ) ) = ( 6 + 0 ) |
141 | 61 | addid1i | ⊢ ( 6 + 0 ) = 6 |
142 | 140 141 | eqtri | ⊢ ( ( 2 · 3 ) + ( 0 + 0 ) ) = 6 |
143 | 57 | mul01i | ⊢ ( 2 · 0 ) = 0 |
144 | 143 | oveq1i | ⊢ ( ( 2 · 0 ) + 1 ) = ( 0 + 1 ) |
145 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
146 | 144 145 138 | 3eqtri | ⊢ ( ( 2 · 0 ) + 1 ) = ; 0 1 |
147 | 29 39 39 10 137 138 4 10 39 142 146 | decma2c | ⊢ ( ( 2 · ; 3 0 ) + 1 ) = ; 6 1 |
148 | 4 40 3 136 4 10 147 63 | decmul2c | ⊢ ( 2 · ; ; 3 0 6 ) = ; ; 6 1 2 |
149 | eqid | ⊢ ; 1 8 = ; 1 8 | |
150 | 11 30 55 112 | decsuc | ⊢ ( ; ; 1 2 4 + 1 ) = ; ; 1 2 5 |
151 | 8cn | ⊢ 8 ∈ ℂ | |
152 | 151 17 18 | addcomli | ⊢ ( 1 + 8 ) = 9 |
153 | 44 10 10 14 107 149 150 152 | decadd | ⊢ ( ; ; ; 1 2 4 1 + ; 1 8 ) = ; ; ; 1 2 5 9 |
154 | 153 1 | eqtr4i | ⊢ ( ; ; ; 1 2 4 1 + ; 1 8 ) = 𝑁 |
155 | 34 | nn0cni | ⊢ ; ; 3 2 4 ∈ ℂ |
156 | 155 | addid2i | ⊢ ( 0 + ; ; 3 2 4 ) = ; ; 3 2 4 |
157 | 68 | oveq1i | ⊢ ( ( 0 · 𝑁 ) + ; ; 3 2 4 ) = ( 0 + ; ; 3 2 4 ) |
158 | 10 14 | deccl | ⊢ ; 1 8 ∈ ℕ0 |
159 | 10 30 | deccl | ⊢ ; 1 4 ∈ ℕ0 |
160 | eqid | ⊢ ; 1 4 = ; 1 4 | |
161 | 17 | mulid1i | ⊢ ( 1 · 1 ) = 1 |
162 | 161 114 | oveq12i | ⊢ ( ( 1 · 1 ) + ( 1 + 1 ) ) = ( 1 + 2 ) |
163 | 1p2e3 | ⊢ ( 1 + 2 ) = 3 | |
164 | 162 163 | eqtri | ⊢ ( ( 1 · 1 ) + ( 1 + 1 ) ) = 3 |
165 | 151 | mulid1i | ⊢ ( 8 · 1 ) = 8 |
166 | 165 | oveq1i | ⊢ ( ( 8 · 1 ) + 4 ) = ( 8 + 4 ) |
167 | 8p4e12 | ⊢ ( 8 + 4 ) = ; 1 2 | |
168 | 166 167 | eqtri | ⊢ ( ( 8 · 1 ) + 4 ) = ; 1 2 |
169 | 10 14 10 30 149 160 10 4 10 164 168 | decmac | ⊢ ( ( ; 1 8 · 1 ) + ; 1 4 ) = ; 3 2 |
170 | 151 | mulid2i | ⊢ ( 1 · 8 ) = 8 |
171 | 170 | oveq1i | ⊢ ( ( 1 · 8 ) + 6 ) = ( 8 + 6 ) |
172 | 8p6e14 | ⊢ ( 8 + 6 ) = ; 1 4 | |
173 | 171 172 | eqtri | ⊢ ( ( 1 · 8 ) + 6 ) = ; 1 4 |
174 | 8t8e64 | ⊢ ( 8 · 8 ) = ; 6 4 | |
175 | 14 10 14 149 30 3 173 174 | decmul1c | ⊢ ( ; 1 8 · 8 ) = ; ; 1 4 4 |
176 | 158 10 14 149 30 159 169 175 | decmul2c | ⊢ ( ; 1 8 · ; 1 8 ) = ; ; 3 2 4 |
177 | 156 157 176 | 3eqtr4i | ⊢ ( ( 0 · 𝑁 ) + ; ; 3 2 4 ) = ( ; 1 8 · ; 1 8 ) |
178 | 2 41 8 43 34 45 135 148 154 177 | mod2xnegi | ⊢ ( ( 2 ↑ ; ; 6 1 2 ) mod 𝑁 ) = ( ; ; 3 2 4 mod 𝑁 ) |
179 | 1 | 1259lem1 | ⊢ ( ( 2 ↑ ; 1 7 ) mod 𝑁 ) = ( ; ; 1 3 6 mod 𝑁 ) |
180 | eqid | ⊢ ; ; 6 1 2 = ; ; 6 1 2 | |
181 | eqid | ⊢ ; 1 7 = ; 1 7 | |
182 | eqid | ⊢ ; 6 1 = ; 6 1 | |
183 | 3 10 114 182 | decsuc | ⊢ ( ; 6 1 + 1 ) = ; 6 2 |
184 | 7p2e9 | ⊢ ( 7 + 2 ) = 9 | |
185 | 56 57 184 | addcomli | ⊢ ( 2 + 7 ) = 9 |
186 | 27 4 10 35 180 181 183 185 | decadd | ⊢ ( ; ; 6 1 2 + ; 1 7 ) = ; ; 6 2 9 |
187 | 29 10 | deccl | ⊢ ; 3 1 ∈ ℕ0 |
188 | eqid | ⊢ ; 3 1 = ; 3 1 | |
189 | 3p2e5 | ⊢ ( 3 + 2 ) = 5 | |
190 | 99 57 189 | addcomli | ⊢ ( 2 + 3 ) = 5 |
191 | 10 4 29 113 190 | decaddi | ⊢ ( ; 1 2 + 3 ) = ; 1 5 |
192 | 5p1e6 | ⊢ ( 5 + 1 ) = 6 | |
193 | 11 12 29 10 111 188 191 192 | decadd | ⊢ ( ; ; 1 2 5 + ; 3 1 ) = ; ; 1 5 6 |
194 | 114 | oveq1i | ⊢ ( ( 1 + 1 ) + 1 ) = ( 2 + 1 ) |
195 | 194 73 | eqtri | ⊢ ( ( 1 + 1 ) + 1 ) = 3 |
196 | 7p5e12 | ⊢ ( 7 + 5 ) = ; 1 2 | |
197 | 56 92 196 | addcomli | ⊢ ( 5 + 7 ) = ; 1 2 |
198 | 10 12 10 35 88 181 195 4 197 | decaddc | ⊢ ( ; 1 5 + ; 1 7 ) = ; 3 2 |
199 | eqid | ⊢ ; 3 4 = ; 3 4 | |
200 | 7p3e10 | ⊢ ( 7 + 3 ) = ; 1 0 | |
201 | 56 99 200 | addcomli | ⊢ ( 3 + 7 ) = ; 1 0 |
202 | 99 | mulid1i | ⊢ ( 3 · 1 ) = 3 |
203 | 17 | addid1i | ⊢ ( 1 + 0 ) = 1 |
204 | 202 203 | oveq12i | ⊢ ( ( 3 · 1 ) + ( 1 + 0 ) ) = ( 3 + 1 ) |
205 | 3p1e4 | ⊢ ( 3 + 1 ) = 4 | |
206 | 204 205 | eqtri | ⊢ ( ( 3 · 1 ) + ( 1 + 0 ) ) = 4 |
207 | 4cn | ⊢ 4 ∈ ℂ | |
208 | 207 | mulid1i | ⊢ ( 4 · 1 ) = 4 |
209 | 208 | oveq1i | ⊢ ( ( 4 · 1 ) + 0 ) = ( 4 + 0 ) |
210 | 207 | addid1i | ⊢ ( 4 + 0 ) = 4 |
211 | 30 | dec0h | ⊢ 4 = ; 0 4 |
212 | 209 210 211 | 3eqtri | ⊢ ( ( 4 · 1 ) + 0 ) = ; 0 4 |
213 | 29 30 10 39 199 201 10 30 39 206 212 | decmac | ⊢ ( ( ; 3 4 · 1 ) + ( 3 + 7 ) ) = ; 4 4 |
214 | 4 | dec0h | ⊢ 2 = ; 0 2 |
215 | 100 145 | oveq12i | ⊢ ( ( 3 · 2 ) + ( 0 + 1 ) ) = ( 6 + 1 ) |
216 | 6p1e7 | ⊢ ( 6 + 1 ) = 7 | |
217 | 215 216 | eqtri | ⊢ ( ( 3 · 2 ) + ( 0 + 1 ) ) = 7 |
218 | 4t2e8 | ⊢ ( 4 · 2 ) = 8 | |
219 | 218 | oveq1i | ⊢ ( ( 4 · 2 ) + 2 ) = ( 8 + 2 ) |
220 | 8p2e10 | ⊢ ( 8 + 2 ) = ; 1 0 | |
221 | 219 220 | eqtri | ⊢ ( ( 4 · 2 ) + 2 ) = ; 1 0 |
222 | 29 30 39 4 199 214 4 39 10 217 221 | decmac | ⊢ ( ( ; 3 4 · 2 ) + 2 ) = ; 7 0 |
223 | 10 4 29 4 113 198 31 39 35 213 222 | decma2c | ⊢ ( ( ; 3 4 · ; 1 2 ) + ( ; 1 5 + ; 1 7 ) ) = ; ; 4 4 0 |
224 | 5t3e15 | ⊢ ( 5 · 3 ) = ; 1 5 | |
225 | 92 99 224 | mulcomli | ⊢ ( 3 · 5 ) = ; 1 5 |
226 | 5p2e7 | ⊢ ( 5 + 2 ) = 7 | |
227 | 10 12 4 225 226 | decaddi | ⊢ ( ( 3 · 5 ) + 2 ) = ; 1 7 |
228 | 5t4e20 | ⊢ ( 5 · 4 ) = ; 2 0 | |
229 | 92 207 228 | mulcomli | ⊢ ( 4 · 5 ) = ; 2 0 |
230 | 61 | addid2i | ⊢ ( 0 + 6 ) = 6 |
231 | 4 39 3 229 230 | decaddi | ⊢ ( ( 4 · 5 ) + 6 ) = ; 2 6 |
232 | 29 30 3 199 12 3 4 227 231 | decrmac | ⊢ ( ( ; 3 4 · 5 ) + 6 ) = ; ; 1 7 6 |
233 | 11 12 46 3 111 193 31 3 36 223 232 | decma2c | ⊢ ( ( ; 3 4 · ; ; 1 2 5 ) + ( ; ; 1 2 5 + ; 3 1 ) ) = ; ; ; 4 4 0 6 |
234 | 9cn | ⊢ 9 ∈ ℂ | |
235 | 9t3e27 | ⊢ ( 9 · 3 ) = ; 2 7 | |
236 | 234 99 235 | mulcomli | ⊢ ( 3 · 9 ) = ; 2 7 |
237 | 7p4e11 | ⊢ ( 7 + 4 ) = ; 1 1 | |
238 | 4 35 30 236 73 10 237 | decaddci | ⊢ ( ( 3 · 9 ) + 4 ) = ; 3 1 |
239 | 9t4e36 | ⊢ ( 9 · 4 ) = ; 3 6 | |
240 | 234 207 239 | mulcomli | ⊢ ( 4 · 9 ) = ; 3 6 |
241 | 151 61 172 | addcomli | ⊢ ( 6 + 8 ) = ; 1 4 |
242 | 29 3 14 240 205 30 241 | decaddci | ⊢ ( ( 4 · 9 ) + 8 ) = ; 4 4 |
243 | 29 30 14 199 6 30 30 238 242 | decrmac | ⊢ ( ( ; 3 4 · 9 ) + 8 ) = ; ; 3 1 4 |
244 | 13 6 13 14 1 22 31 30 187 233 243 | decma2c | ⊢ ( ( ; 3 4 · 𝑁 ) + ( 𝑁 − 1 ) ) = ; ; ; ; 4 4 0 6 4 |
245 | eqid | ⊢ ; ; 1 3 6 = ; ; 1 3 6 | |
246 | 10 6 | deccl | ⊢ ; 1 9 ∈ ℕ0 |
247 | 246 30 | deccl | ⊢ ; ; 1 9 4 ∈ ℕ0 |
248 | eqid | ⊢ ; 1 3 = ; 1 3 | |
249 | eqid | ⊢ ; ; 1 9 4 = ; ; 1 9 4 | |
250 | 6 35 | deccl | ⊢ ; 9 7 ∈ ℕ0 |
251 | 10 10 | deccl | ⊢ ; 1 1 ∈ ℕ0 |
252 | eqid | ⊢ ; ; 3 2 4 = ; ; 3 2 4 | |
253 | eqid | ⊢ ; 1 9 = ; 1 9 | |
254 | eqid | ⊢ ; 9 7 = ; 9 7 | |
255 | 234 17 120 | addcomli | ⊢ ( 1 + 9 ) = ; 1 0 |
256 | 10 39 145 255 | decsuc | ⊢ ( ( 1 + 9 ) + 1 ) = ; 1 1 |
257 | 9p7e16 | ⊢ ( 9 + 7 ) = ; 1 6 | |
258 | 10 6 6 35 253 254 256 3 257 | decaddc | ⊢ ( ; 1 9 + ; 9 7 ) = ; ; 1 1 6 |
259 | eqid | ⊢ ; 3 2 = ; 3 2 | |
260 | eqid | ⊢ ; 1 1 = ; 1 1 | |
261 | 10 10 114 260 | decsuc | ⊢ ( ; 1 1 + 1 ) = ; 1 2 |
262 | 89 | oveq1i | ⊢ ( ( 2 · 1 ) + 2 ) = ( 2 + 2 ) |
263 | 262 115 211 | 3eqtri | ⊢ ( ( 2 · 1 ) + 2 ) = ; 0 4 |
264 | 29 4 10 4 259 261 10 30 39 206 263 | decmac | ⊢ ( ( ; 3 2 · 1 ) + ( ; 1 1 + 1 ) ) = ; 4 4 |
265 | 208 | oveq1i | ⊢ ( ( 4 · 1 ) + 6 ) = ( 4 + 6 ) |
266 | 6p4e10 | ⊢ ( 6 + 4 ) = ; 1 0 | |
267 | 61 207 266 | addcomli | ⊢ ( 4 + 6 ) = ; 1 0 |
268 | 265 267 | eqtri | ⊢ ( ( 4 · 1 ) + 6 ) = ; 1 0 |
269 | 33 30 251 3 252 258 10 39 10 264 268 | decmac | ⊢ ( ( ; ; 3 2 4 · 1 ) + ( ; 1 9 + ; 9 7 ) ) = ; ; 4 4 0 |
270 | 145 138 | eqtri | ⊢ ( 0 + 1 ) = ; 0 1 |
271 | 3t3e9 | ⊢ ( 3 · 3 ) = 9 | |
272 | 271 139 | oveq12i | ⊢ ( ( 3 · 3 ) + ( 0 + 0 ) ) = ( 9 + 0 ) |
273 | 234 | addid1i | ⊢ ( 9 + 0 ) = 9 |
274 | 272 273 | eqtri | ⊢ ( ( 3 · 3 ) + ( 0 + 0 ) ) = 9 |
275 | 101 | oveq1i | ⊢ ( ( 2 · 3 ) + 1 ) = ( 6 + 1 ) |
276 | 35 | dec0h | ⊢ 7 = ; 0 7 |
277 | 275 216 276 | 3eqtri | ⊢ ( ( 2 · 3 ) + 1 ) = ; 0 7 |
278 | 29 4 39 10 259 270 29 35 39 274 277 | decmac | ⊢ ( ( ; 3 2 · 3 ) + ( 0 + 1 ) ) = ; 9 7 |
279 | 4t3e12 | ⊢ ( 4 · 3 ) = ; 1 2 | |
280 | 4p2e6 | ⊢ ( 4 + 2 ) = 6 | |
281 | 207 57 280 | addcomli | ⊢ ( 2 + 4 ) = 6 |
282 | 10 4 30 279 281 | decaddi | ⊢ ( ( 4 · 3 ) + 4 ) = ; 1 6 |
283 | 33 30 39 30 252 211 29 3 10 278 282 | decmac | ⊢ ( ( ; ; 3 2 4 · 3 ) + 4 ) = ; ; 9 7 6 |
284 | 10 29 246 30 248 249 34 3 250 269 283 | decma2c | ⊢ ( ( ; ; 3 2 4 · ; 1 3 ) + ; ; 1 9 4 ) = ; ; ; 4 4 0 6 |
285 | 6t3e18 | ⊢ ( 6 · 3 ) = ; 1 8 | |
286 | 61 99 285 | mulcomli | ⊢ ( 3 · 6 ) = ; 1 8 |
287 | 10 14 18 286 | decsuc | ⊢ ( ( 3 · 6 ) + 1 ) = ; 1 9 |
288 | 10 4 4 63 115 | decaddi | ⊢ ( ( 2 · 6 ) + 2 ) = ; 1 4 |
289 | 29 4 4 259 3 30 10 287 288 | decrmac | ⊢ ( ( ; 3 2 · 6 ) + 2 ) = ; ; 1 9 4 |
290 | 6t4e24 | ⊢ ( 6 · 4 ) = ; 2 4 | |
291 | 61 207 290 | mulcomli | ⊢ ( 4 · 6 ) = ; 2 4 |
292 | 3 33 30 252 30 4 289 291 | decmul1c | ⊢ ( ; ; 3 2 4 · 6 ) = ; ; ; 1 9 4 4 |
293 | 34 37 3 245 30 247 284 292 | decmul2c | ⊢ ( ; ; 3 2 4 · ; ; 1 3 6 ) = ; ; ; ; 4 4 0 6 4 |
294 | 244 293 | eqtr4i | ⊢ ( ( ; 3 4 · 𝑁 ) + ( 𝑁 − 1 ) ) = ( ; ; 3 2 4 · ; ; 1 3 6 ) |
295 | 26 2 28 32 34 23 36 38 178 179 186 294 | modxai | ⊢ ( ( 2 ↑ ; ; 6 2 9 ) mod 𝑁 ) = ( ( 𝑁 − 1 ) mod 𝑁 ) |
296 | eqid | ⊢ ; ; 6 2 9 = ; ; 6 2 9 | |
297 | eqid | ⊢ ; 6 2 = ; 6 2 | |
298 | 139 | oveq2i | ⊢ ( ( 2 · 6 ) + ( 0 + 0 ) ) = ( ( 2 · 6 ) + 0 ) |
299 | 63 | oveq1i | ⊢ ( ( 2 · 6 ) + 0 ) = ( ; 1 2 + 0 ) |
300 | 11 | nn0cni | ⊢ ; 1 2 ∈ ℂ |
301 | 300 | addid1i | ⊢ ( ; 1 2 + 0 ) = ; 1 2 |
302 | 298 299 301 | 3eqtri | ⊢ ( ( 2 · 6 ) + ( 0 + 0 ) ) = ; 1 2 |
303 | 12 | dec0h | ⊢ 5 = ; 0 5 |
304 | 81 55 303 | 3eqtri | ⊢ ( ( 2 · 2 ) + 1 ) = ; 0 5 |
305 | 3 4 39 10 297 138 4 12 39 302 304 | decma2c | ⊢ ( ( 2 · ; 6 2 ) + 1 ) = ; ; 1 2 5 |
306 | 9t2e18 | ⊢ ( 9 · 2 ) = ; 1 8 | |
307 | 234 57 306 | mulcomli | ⊢ ( 2 · 9 ) = ; 1 8 |
308 | 4 5 6 296 14 10 305 307 | decmul2c | ⊢ ( 2 · ; ; 6 2 9 ) = ; ; ; 1 2 5 8 |
309 | 308 22 | eqtr4i | ⊢ ( 2 · ; ; 6 2 9 ) = ( 𝑁 − 1 ) |
310 | npcan | ⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) | |
311 | 67 17 310 | mp2an | ⊢ ( ( 𝑁 − 1 ) + 1 ) = 𝑁 |
312 | 68 | oveq1i | ⊢ ( ( 0 · 𝑁 ) + 1 ) = ( 0 + 1 ) |
313 | 145 312 161 | 3eqtr4i | ⊢ ( ( 0 · 𝑁 ) + 1 ) = ( 1 · 1 ) |
314 | 2 7 8 9 10 23 295 309 311 313 | mod2xnegi | ⊢ ( ( 2 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = ( 1 mod 𝑁 ) |