Description: Lemma for 1259prm . Calculate the GCD of 2 ^ 3 4 - 1 == 8 6 9 with N = 1 2 5 9 . (Contributed by Mario Carneiro, 22-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 1259prm.1 | ⊢ 𝑁 = ; ; ; 1 2 5 9 | |
Assertion | 1259lem5 | ⊢ ( ( ( 2 ↑ ; 3 4 ) − 1 ) gcd 𝑁 ) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1259prm.1 | ⊢ 𝑁 = ; ; ; 1 2 5 9 | |
2 | 2nn | ⊢ 2 ∈ ℕ | |
3 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
4 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
5 | 3 4 | deccl | ⊢ ; 3 4 ∈ ℕ0 |
6 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ ; 3 4 ∈ ℕ0 ) → ( 2 ↑ ; 3 4 ) ∈ ℕ ) | |
7 | 2 5 6 | mp2an | ⊢ ( 2 ↑ ; 3 4 ) ∈ ℕ |
8 | nnm1nn0 | ⊢ ( ( 2 ↑ ; 3 4 ) ∈ ℕ → ( ( 2 ↑ ; 3 4 ) − 1 ) ∈ ℕ0 ) | |
9 | 7 8 | ax-mp | ⊢ ( ( 2 ↑ ; 3 4 ) − 1 ) ∈ ℕ0 |
10 | 8nn0 | ⊢ 8 ∈ ℕ0 | |
11 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
12 | 10 11 | deccl | ⊢ ; 8 6 ∈ ℕ0 |
13 | 9nn0 | ⊢ 9 ∈ ℕ0 | |
14 | 12 13 | deccl | ⊢ ; ; 8 6 9 ∈ ℕ0 |
15 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
16 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
17 | 15 16 | deccl | ⊢ ; 1 2 ∈ ℕ0 |
18 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
19 | 17 18 | deccl | ⊢ ; ; 1 2 5 ∈ ℕ0 |
20 | 9nn | ⊢ 9 ∈ ℕ | |
21 | 19 20 | decnncl | ⊢ ; ; ; 1 2 5 9 ∈ ℕ |
22 | 1 21 | eqeltri | ⊢ 𝑁 ∈ ℕ |
23 | 1 | 1259lem2 | ⊢ ( ( 2 ↑ ; 3 4 ) mod 𝑁 ) = ( ; ; 8 7 0 mod 𝑁 ) |
24 | 6p1e7 | ⊢ ( 6 + 1 ) = 7 | |
25 | eqid | ⊢ ; 8 6 = ; 8 6 | |
26 | 10 11 24 25 | decsuc | ⊢ ( ; 8 6 + 1 ) = ; 8 7 |
27 | eqid | ⊢ ; ; 8 6 9 = ; ; 8 6 9 | |
28 | 12 26 27 | decsucc | ⊢ ( ; ; 8 6 9 + 1 ) = ; ; 8 7 0 |
29 | 22 7 15 14 23 28 | modsubi | ⊢ ( ( ( 2 ↑ ; 3 4 ) − 1 ) mod 𝑁 ) = ( ; ; 8 6 9 mod 𝑁 ) |
30 | 3 13 | deccl | ⊢ ; 3 9 ∈ ℕ0 |
31 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
32 | 30 31 | deccl | ⊢ ; ; 3 9 0 ∈ ℕ0 |
33 | 10 13 | deccl | ⊢ ; 8 9 ∈ ℕ0 |
34 | 16 15 | deccl | ⊢ ; 2 1 ∈ ℕ0 |
35 | 15 3 | deccl | ⊢ ; 1 3 ∈ ℕ0 |
36 | 34 | nn0zi | ⊢ ; 2 1 ∈ ℤ |
37 | 35 | nn0zi | ⊢ ; 1 3 ∈ ℤ |
38 | gcdcom | ⊢ ( ( ; 2 1 ∈ ℤ ∧ ; 1 3 ∈ ℤ ) → ( ; 2 1 gcd ; 1 3 ) = ( ; 1 3 gcd ; 2 1 ) ) | |
39 | 36 37 38 | mp2an | ⊢ ( ; 2 1 gcd ; 1 3 ) = ( ; 1 3 gcd ; 2 1 ) |
40 | 3nn | ⊢ 3 ∈ ℕ | |
41 | 15 40 | decnncl | ⊢ ; 1 3 ∈ ℕ |
42 | 8nn | ⊢ 8 ∈ ℕ | |
43 | eqid | ⊢ ; 1 3 = ; 1 3 | |
44 | 10 | dec0h | ⊢ 8 = ; 0 8 |
45 | ax-1cn | ⊢ 1 ∈ ℂ | |
46 | 45 | mulid1i | ⊢ ( 1 · 1 ) = 1 |
47 | 45 | addid2i | ⊢ ( 0 + 1 ) = 1 |
48 | 46 47 | oveq12i | ⊢ ( ( 1 · 1 ) + ( 0 + 1 ) ) = ( 1 + 1 ) |
49 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
50 | 48 49 | eqtri | ⊢ ( ( 1 · 1 ) + ( 0 + 1 ) ) = 2 |
51 | 3cn | ⊢ 3 ∈ ℂ | |
52 | 51 | mulid1i | ⊢ ( 3 · 1 ) = 3 |
53 | 52 | oveq1i | ⊢ ( ( 3 · 1 ) + 8 ) = ( 3 + 8 ) |
54 | 8cn | ⊢ 8 ∈ ℂ | |
55 | 8p3e11 | ⊢ ( 8 + 3 ) = ; 1 1 | |
56 | 54 51 55 | addcomli | ⊢ ( 3 + 8 ) = ; 1 1 |
57 | 53 56 | eqtri | ⊢ ( ( 3 · 1 ) + 8 ) = ; 1 1 |
58 | 15 3 31 10 43 44 15 15 15 50 57 | decmac | ⊢ ( ( ; 1 3 · 1 ) + 8 ) = ; 2 1 |
59 | 1nn | ⊢ 1 ∈ ℕ | |
60 | 8lt10 | ⊢ 8 < ; 1 0 | |
61 | 59 3 10 60 | declti | ⊢ 8 < ; 1 3 |
62 | 41 15 42 58 61 | ndvdsi | ⊢ ¬ ; 1 3 ∥ ; 2 1 |
63 | 13prm | ⊢ ; 1 3 ∈ ℙ | |
64 | coprm | ⊢ ( ( ; 1 3 ∈ ℙ ∧ ; 2 1 ∈ ℤ ) → ( ¬ ; 1 3 ∥ ; 2 1 ↔ ( ; 1 3 gcd ; 2 1 ) = 1 ) ) | |
65 | 63 36 64 | mp2an | ⊢ ( ¬ ; 1 3 ∥ ; 2 1 ↔ ( ; 1 3 gcd ; 2 1 ) = 1 ) |
66 | 62 65 | mpbi | ⊢ ( ; 1 3 gcd ; 2 1 ) = 1 |
67 | 39 66 | eqtri | ⊢ ( ; 2 1 gcd ; 1 3 ) = 1 |
68 | eqid | ⊢ ; 2 1 = ; 2 1 | |
69 | 2cn | ⊢ 2 ∈ ℂ | |
70 | 69 | mulid2i | ⊢ ( 1 · 2 ) = 2 |
71 | 45 | addid1i | ⊢ ( 1 + 0 ) = 1 |
72 | 70 71 | oveq12i | ⊢ ( ( 1 · 2 ) + ( 1 + 0 ) ) = ( 2 + 1 ) |
73 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
74 | 72 73 | eqtri | ⊢ ( ( 1 · 2 ) + ( 1 + 0 ) ) = 3 |
75 | 46 | oveq1i | ⊢ ( ( 1 · 1 ) + 3 ) = ( 1 + 3 ) |
76 | 3p1e4 | ⊢ ( 3 + 1 ) = 4 | |
77 | 51 45 76 | addcomli | ⊢ ( 1 + 3 ) = 4 |
78 | 4 | dec0h | ⊢ 4 = ; 0 4 |
79 | 75 77 78 | 3eqtri | ⊢ ( ( 1 · 1 ) + 3 ) = ; 0 4 |
80 | 16 15 15 3 68 43 15 4 31 74 79 | decma2c | ⊢ ( ( 1 · ; 2 1 ) + ; 1 3 ) = ; 3 4 |
81 | 15 35 34 67 80 | gcdi | ⊢ ( ; 3 4 gcd ; 2 1 ) = 1 |
82 | eqid | ⊢ ; 3 4 = ; 3 4 | |
83 | 3t2e6 | ⊢ ( 3 · 2 ) = 6 | |
84 | 51 69 83 | mulcomli | ⊢ ( 2 · 3 ) = 6 |
85 | 69 | addid1i | ⊢ ( 2 + 0 ) = 2 |
86 | 84 85 | oveq12i | ⊢ ( ( 2 · 3 ) + ( 2 + 0 ) ) = ( 6 + 2 ) |
87 | 6p2e8 | ⊢ ( 6 + 2 ) = 8 | |
88 | 86 87 | eqtri | ⊢ ( ( 2 · 3 ) + ( 2 + 0 ) ) = 8 |
89 | 4cn | ⊢ 4 ∈ ℂ | |
90 | 4t2e8 | ⊢ ( 4 · 2 ) = 8 | |
91 | 89 69 90 | mulcomli | ⊢ ( 2 · 4 ) = 8 |
92 | 91 | oveq1i | ⊢ ( ( 2 · 4 ) + 1 ) = ( 8 + 1 ) |
93 | 8p1e9 | ⊢ ( 8 + 1 ) = 9 | |
94 | 13 | dec0h | ⊢ 9 = ; 0 9 |
95 | 92 93 94 | 3eqtri | ⊢ ( ( 2 · 4 ) + 1 ) = ; 0 9 |
96 | 3 4 16 15 82 68 16 13 31 88 95 | decma2c | ⊢ ( ( 2 · ; 3 4 ) + ; 2 1 ) = ; 8 9 |
97 | 16 34 5 81 96 | gcdi | ⊢ ( ; 8 9 gcd ; 3 4 ) = 1 |
98 | eqid | ⊢ ; 8 9 = ; 8 9 | |
99 | 4p3e7 | ⊢ ( 4 + 3 ) = 7 | |
100 | 89 51 99 | addcomli | ⊢ ( 3 + 4 ) = 7 |
101 | 100 | oveq2i | ⊢ ( ( 4 · 8 ) + ( 3 + 4 ) ) = ( ( 4 · 8 ) + 7 ) |
102 | 7nn0 | ⊢ 7 ∈ ℕ0 | |
103 | 8t4e32 | ⊢ ( 8 · 4 ) = ; 3 2 | |
104 | 54 89 103 | mulcomli | ⊢ ( 4 · 8 ) = ; 3 2 |
105 | 7cn | ⊢ 7 ∈ ℂ | |
106 | 7p2e9 | ⊢ ( 7 + 2 ) = 9 | |
107 | 105 69 106 | addcomli | ⊢ ( 2 + 7 ) = 9 |
108 | 3 16 102 104 107 | decaddi | ⊢ ( ( 4 · 8 ) + 7 ) = ; 3 9 |
109 | 101 108 | eqtri | ⊢ ( ( 4 · 8 ) + ( 3 + 4 ) ) = ; 3 9 |
110 | 9cn | ⊢ 9 ∈ ℂ | |
111 | 9t4e36 | ⊢ ( 9 · 4 ) = ; 3 6 | |
112 | 110 89 111 | mulcomli | ⊢ ( 4 · 9 ) = ; 3 6 |
113 | 6p4e10 | ⊢ ( 6 + 4 ) = ; 1 0 | |
114 | 3 11 4 112 76 113 | decaddci2 | ⊢ ( ( 4 · 9 ) + 4 ) = ; 4 0 |
115 | 10 13 3 4 98 82 4 31 4 109 114 | decma2c | ⊢ ( ( 4 · ; 8 9 ) + ; 3 4 ) = ; ; 3 9 0 |
116 | 4 5 33 97 115 | gcdi | ⊢ ( ; ; 3 9 0 gcd ; 8 9 ) = 1 |
117 | eqid | ⊢ ; ; 3 9 0 = ; ; 3 9 0 | |
118 | eqid | ⊢ ; 3 9 = ; 3 9 | |
119 | 54 | addid1i | ⊢ ( 8 + 0 ) = 8 |
120 | 119 44 | eqtri | ⊢ ( 8 + 0 ) = ; 0 8 |
121 | 69 | addid2i | ⊢ ( 0 + 2 ) = 2 |
122 | 84 121 | oveq12i | ⊢ ( ( 2 · 3 ) + ( 0 + 2 ) ) = ( 6 + 2 ) |
123 | 122 87 | eqtri | ⊢ ( ( 2 · 3 ) + ( 0 + 2 ) ) = 8 |
124 | 9t2e18 | ⊢ ( 9 · 2 ) = ; 1 8 | |
125 | 110 69 124 | mulcomli | ⊢ ( 2 · 9 ) = ; 1 8 |
126 | 8p8e16 | ⊢ ( 8 + 8 ) = ; 1 6 | |
127 | 15 10 10 125 49 11 126 | decaddci | ⊢ ( ( 2 · 9 ) + 8 ) = ; 2 6 |
128 | 3 13 31 10 118 120 16 11 16 123 127 | decma2c | ⊢ ( ( 2 · ; 3 9 ) + ( 8 + 0 ) ) = ; 8 6 |
129 | 2t0e0 | ⊢ ( 2 · 0 ) = 0 | |
130 | 129 | oveq1i | ⊢ ( ( 2 · 0 ) + 9 ) = ( 0 + 9 ) |
131 | 110 | addid2i | ⊢ ( 0 + 9 ) = 9 |
132 | 130 131 94 | 3eqtri | ⊢ ( ( 2 · 0 ) + 9 ) = ; 0 9 |
133 | 30 31 10 13 117 98 16 13 31 128 132 | decma2c | ⊢ ( ( 2 · ; ; 3 9 0 ) + ; 8 9 ) = ; ; 8 6 9 |
134 | 16 33 32 116 133 | gcdi | ⊢ ( ; ; 8 6 9 gcd ; ; 3 9 0 ) = 1 |
135 | 30 | nn0cni | ⊢ ; 3 9 ∈ ℂ |
136 | 135 | addid1i | ⊢ ( ; 3 9 + 0 ) = ; 3 9 |
137 | 54 | mulid2i | ⊢ ( 1 · 8 ) = 8 |
138 | 137 76 | oveq12i | ⊢ ( ( 1 · 8 ) + ( 3 + 1 ) ) = ( 8 + 4 ) |
139 | 8p4e12 | ⊢ ( 8 + 4 ) = ; 1 2 | |
140 | 138 139 | eqtri | ⊢ ( ( 1 · 8 ) + ( 3 + 1 ) ) = ; 1 2 |
141 | 6cn | ⊢ 6 ∈ ℂ | |
142 | 141 | mulid2i | ⊢ ( 1 · 6 ) = 6 |
143 | 142 | oveq1i | ⊢ ( ( 1 · 6 ) + 9 ) = ( 6 + 9 ) |
144 | 9p6e15 | ⊢ ( 9 + 6 ) = ; 1 5 | |
145 | 110 141 144 | addcomli | ⊢ ( 6 + 9 ) = ; 1 5 |
146 | 143 145 | eqtri | ⊢ ( ( 1 · 6 ) + 9 ) = ; 1 5 |
147 | 10 11 3 13 25 136 15 18 15 140 146 | decma2c | ⊢ ( ( 1 · ; 8 6 ) + ( ; 3 9 + 0 ) ) = ; ; 1 2 5 |
148 | 110 | mulid2i | ⊢ ( 1 · 9 ) = 9 |
149 | 148 | oveq1i | ⊢ ( ( 1 · 9 ) + 0 ) = ( 9 + 0 ) |
150 | 110 | addid1i | ⊢ ( 9 + 0 ) = 9 |
151 | 149 150 94 | 3eqtri | ⊢ ( ( 1 · 9 ) + 0 ) = ; 0 9 |
152 | 12 13 30 31 27 117 15 13 31 147 151 | decma2c | ⊢ ( ( 1 · ; ; 8 6 9 ) + ; ; 3 9 0 ) = ; ; ; 1 2 5 9 |
153 | 152 1 | eqtr4i | ⊢ ( ( 1 · ; ; 8 6 9 ) + ; ; 3 9 0 ) = 𝑁 |
154 | 15 32 14 134 153 | gcdi | ⊢ ( 𝑁 gcd ; ; 8 6 9 ) = 1 |
155 | 9 14 22 29 154 | gcdmodi | ⊢ ( ( ( 2 ↑ ; 3 4 ) − 1 ) gcd 𝑁 ) = 1 |