Step |
Hyp |
Ref |
Expression |
1 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
2 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
3 |
1 2
|
deccl |
⊢ ; 1 3 ∈ ℕ0 |
4 |
|
9nn |
⊢ 9 ∈ ℕ |
5 |
3 4
|
decnncl |
⊢ ; ; 1 3 9 ∈ ℕ |
6 |
|
8nn0 |
⊢ 8 ∈ ℕ0 |
7 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
8 |
|
9nn0 |
⊢ 9 ∈ ℕ0 |
9 |
|
1lt8 |
⊢ 1 < 8 |
10 |
|
3lt10 |
⊢ 3 < ; 1 0 |
11 |
|
9lt10 |
⊢ 9 < ; 1 0 |
12 |
1 6 2 7 8 1 9 10 11
|
3decltc |
⊢ ; ; 1 3 9 < ; ; 8 4 1 |
13 |
|
3nn |
⊢ 3 ∈ ℕ |
14 |
1 13
|
decnncl |
⊢ ; 1 3 ∈ ℕ |
15 |
|
1lt10 |
⊢ 1 < ; 1 0 |
16 |
14 8 1 15
|
declti |
⊢ 1 < ; ; 1 3 9 |
17 |
|
4t2e8 |
⊢ ( 4 · 2 ) = 8 |
18 |
|
df-9 |
⊢ 9 = ( 8 + 1 ) |
19 |
3 7 17 18
|
dec2dvds |
⊢ ¬ 2 ∥ ; ; 1 3 9 |
20 |
|
6nn0 |
⊢ 6 ∈ ℕ0 |
21 |
7 20
|
deccl |
⊢ ; 4 6 ∈ ℕ0 |
22 |
|
1nn |
⊢ 1 ∈ ℕ |
23 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
24 |
|
eqid |
⊢ ; 4 6 = ; 4 6 |
25 |
1
|
dec0h |
⊢ 1 = ; 0 1 |
26 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
27 |
26
|
addlidi |
⊢ ( 0 + 1 ) = 1 |
28 |
27
|
oveq2i |
⊢ ( ( 3 · 4 ) + ( 0 + 1 ) ) = ( ( 3 · 4 ) + 1 ) |
29 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
30 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
31 |
7
|
nn0cni |
⊢ 4 ∈ ℂ |
32 |
|
3cn |
⊢ 3 ∈ ℂ |
33 |
|
4t3e12 |
⊢ ( 4 · 3 ) = ; 1 2 |
34 |
31 32 33
|
mulcomli |
⊢ ( 3 · 4 ) = ; 1 2 |
35 |
1 29 30 34
|
decsuc |
⊢ ( ( 3 · 4 ) + 1 ) = ; 1 3 |
36 |
28 35
|
eqtri |
⊢ ( ( 3 · 4 ) + ( 0 + 1 ) ) = ; 1 3 |
37 |
|
8p1e9 |
⊢ ( 8 + 1 ) = 9 |
38 |
20
|
nn0cni |
⊢ 6 ∈ ℂ |
39 |
|
6t3e18 |
⊢ ( 6 · 3 ) = ; 1 8 |
40 |
38 32 39
|
mulcomli |
⊢ ( 3 · 6 ) = ; 1 8 |
41 |
1 6 37 40
|
decsuc |
⊢ ( ( 3 · 6 ) + 1 ) = ; 1 9 |
42 |
7 20 23 1 24 25 2 8 1 36 41
|
decma2c |
⊢ ( ( 3 · ; 4 6 ) + 1 ) = ; ; 1 3 9 |
43 |
|
1lt3 |
⊢ 1 < 3 |
44 |
13 21 22 42 43
|
ndvdsi |
⊢ ¬ 3 ∥ ; ; 1 3 9 |
45 |
|
4nn |
⊢ 4 ∈ ℕ |
46 |
|
4lt5 |
⊢ 4 < 5 |
47 |
|
5p4e9 |
⊢ ( 5 + 4 ) = 9 |
48 |
3 45 46 47
|
dec5dvds2 |
⊢ ¬ 5 ∥ ; ; 1 3 9 |
49 |
|
7nn |
⊢ 7 ∈ ℕ |
50 |
1 8
|
deccl |
⊢ ; 1 9 ∈ ℕ0 |
51 |
|
6nn |
⊢ 6 ∈ ℕ |
52 |
|
eqid |
⊢ ; 1 9 = ; 1 9 |
53 |
20
|
dec0h |
⊢ 6 = ; 0 6 |
54 |
|
7nn0 |
⊢ 7 ∈ ℕ0 |
55 |
|
7cn |
⊢ 7 ∈ ℂ |
56 |
55
|
mulridi |
⊢ ( 7 · 1 ) = 7 |
57 |
38
|
addlidi |
⊢ ( 0 + 6 ) = 6 |
58 |
56 57
|
oveq12i |
⊢ ( ( 7 · 1 ) + ( 0 + 6 ) ) = ( 7 + 6 ) |
59 |
|
7p6e13 |
⊢ ( 7 + 6 ) = ; 1 3 |
60 |
58 59
|
eqtri |
⊢ ( ( 7 · 1 ) + ( 0 + 6 ) ) = ; 1 3 |
61 |
|
9cn |
⊢ 9 ∈ ℂ |
62 |
|
9t7e63 |
⊢ ( 9 · 7 ) = ; 6 3 |
63 |
61 55 62
|
mulcomli |
⊢ ( 7 · 9 ) = ; 6 3 |
64 |
|
6p3e9 |
⊢ ( 6 + 3 ) = 9 |
65 |
38 32 64
|
addcomli |
⊢ ( 3 + 6 ) = 9 |
66 |
20 2 20 63 65
|
decaddi |
⊢ ( ( 7 · 9 ) + 6 ) = ; 6 9 |
67 |
1 8 23 20 52 53 54 8 20 60 66
|
decma2c |
⊢ ( ( 7 · ; 1 9 ) + 6 ) = ; ; 1 3 9 |
68 |
|
6lt7 |
⊢ 6 < 7 |
69 |
49 50 51 67 68
|
ndvdsi |
⊢ ¬ 7 ∥ ; ; 1 3 9 |
70 |
1 22
|
decnncl |
⊢ ; 1 1 ∈ ℕ |
71 |
1 29
|
deccl |
⊢ ; 1 2 ∈ ℕ0 |
72 |
|
eqid |
⊢ ; 1 2 = ; 1 2 |
73 |
54
|
dec0h |
⊢ 7 = ; 0 7 |
74 |
1 1
|
deccl |
⊢ ; 1 1 ∈ ℕ0 |
75 |
|
2cn |
⊢ 2 ∈ ℂ |
76 |
75
|
addlidi |
⊢ ( 0 + 2 ) = 2 |
77 |
76
|
oveq2i |
⊢ ( ( ; 1 1 · 1 ) + ( 0 + 2 ) ) = ( ( ; 1 1 · 1 ) + 2 ) |
78 |
70
|
nncni |
⊢ ; 1 1 ∈ ℂ |
79 |
78
|
mulridi |
⊢ ( ; 1 1 · 1 ) = ; 1 1 |
80 |
|
1p2e3 |
⊢ ( 1 + 2 ) = 3 |
81 |
1 1 29 79 80
|
decaddi |
⊢ ( ( ; 1 1 · 1 ) + 2 ) = ; 1 3 |
82 |
77 81
|
eqtri |
⊢ ( ( ; 1 1 · 1 ) + ( 0 + 2 ) ) = ; 1 3 |
83 |
|
eqid |
⊢ ; 1 1 = ; 1 1 |
84 |
75
|
mullidi |
⊢ ( 1 · 2 ) = 2 |
85 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
86 |
84 85
|
oveq12i |
⊢ ( ( 1 · 2 ) + ( 0 + 0 ) ) = ( 2 + 0 ) |
87 |
75
|
addridi |
⊢ ( 2 + 0 ) = 2 |
88 |
86 87
|
eqtri |
⊢ ( ( 1 · 2 ) + ( 0 + 0 ) ) = 2 |
89 |
84
|
oveq1i |
⊢ ( ( 1 · 2 ) + 7 ) = ( 2 + 7 ) |
90 |
|
7p2e9 |
⊢ ( 7 + 2 ) = 9 |
91 |
55 75 90
|
addcomli |
⊢ ( 2 + 7 ) = 9 |
92 |
8
|
dec0h |
⊢ 9 = ; 0 9 |
93 |
89 91 92
|
3eqtri |
⊢ ( ( 1 · 2 ) + 7 ) = ; 0 9 |
94 |
1 1 23 54 83 73 29 8 23 88 93
|
decmac |
⊢ ( ( ; 1 1 · 2 ) + 7 ) = ; 2 9 |
95 |
1 29 23 54 72 73 74 8 29 82 94
|
decma2c |
⊢ ( ( ; 1 1 · ; 1 2 ) + 7 ) = ; ; 1 3 9 |
96 |
|
7lt10 |
⊢ 7 < ; 1 0 |
97 |
22 1 54 96
|
declti |
⊢ 7 < ; 1 1 |
98 |
70 71 49 95 97
|
ndvdsi |
⊢ ¬ ; 1 1 ∥ ; ; 1 3 9 |
99 |
|
10nn0 |
⊢ ; 1 0 ∈ ℕ0 |
100 |
|
eqid |
⊢ ; 1 0 = ; 1 0 |
101 |
|
eqid |
⊢ ; 1 3 = ; 1 3 |
102 |
23
|
dec0h |
⊢ 0 = ; 0 0 |
103 |
85 102
|
eqtri |
⊢ ( 0 + 0 ) = ; 0 0 |
104 |
26
|
mulridi |
⊢ ( 1 · 1 ) = 1 |
105 |
104 85
|
oveq12i |
⊢ ( ( 1 · 1 ) + ( 0 + 0 ) ) = ( 1 + 0 ) |
106 |
26
|
addridi |
⊢ ( 1 + 0 ) = 1 |
107 |
105 106
|
eqtri |
⊢ ( ( 1 · 1 ) + ( 0 + 0 ) ) = 1 |
108 |
32
|
mulridi |
⊢ ( 3 · 1 ) = 3 |
109 |
108
|
oveq1i |
⊢ ( ( 3 · 1 ) + 0 ) = ( 3 + 0 ) |
110 |
32
|
addridi |
⊢ ( 3 + 0 ) = 3 |
111 |
2
|
dec0h |
⊢ 3 = ; 0 3 |
112 |
109 110 111
|
3eqtri |
⊢ ( ( 3 · 1 ) + 0 ) = ; 0 3 |
113 |
1 2 23 23 101 103 1 2 23 107 112
|
decmac |
⊢ ( ( ; 1 3 · 1 ) + ( 0 + 0 ) ) = ; 1 3 |
114 |
3
|
nn0cni |
⊢ ; 1 3 ∈ ℂ |
115 |
114
|
mul01i |
⊢ ( ; 1 3 · 0 ) = 0 |
116 |
115
|
oveq1i |
⊢ ( ( ; 1 3 · 0 ) + 9 ) = ( 0 + 9 ) |
117 |
61
|
addlidi |
⊢ ( 0 + 9 ) = 9 |
118 |
116 117 92
|
3eqtri |
⊢ ( ( ; 1 3 · 0 ) + 9 ) = ; 0 9 |
119 |
1 23 23 8 100 92 3 8 23 113 118
|
decma2c |
⊢ ( ( ; 1 3 · ; 1 0 ) + 9 ) = ; ; 1 3 9 |
120 |
22 2 8 11
|
declti |
⊢ 9 < ; 1 3 |
121 |
14 99 4 119 120
|
ndvdsi |
⊢ ¬ ; 1 3 ∥ ; ; 1 3 9 |
122 |
1 49
|
decnncl |
⊢ ; 1 7 ∈ ℕ |
123 |
|
eqid |
⊢ ; 1 7 = ; 1 7 |
124 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
125 |
|
8cn |
⊢ 8 ∈ ℂ |
126 |
125
|
mullidi |
⊢ ( 1 · 8 ) = 8 |
127 |
|
5cn |
⊢ 5 ∈ ℂ |
128 |
127
|
addlidi |
⊢ ( 0 + 5 ) = 5 |
129 |
126 128
|
oveq12i |
⊢ ( ( 1 · 8 ) + ( 0 + 5 ) ) = ( 8 + 5 ) |
130 |
|
8p5e13 |
⊢ ( 8 + 5 ) = ; 1 3 |
131 |
129 130
|
eqtri |
⊢ ( ( 1 · 8 ) + ( 0 + 5 ) ) = ; 1 3 |
132 |
|
8t7e56 |
⊢ ( 8 · 7 ) = ; 5 6 |
133 |
125 55 132
|
mulcomli |
⊢ ( 7 · 8 ) = ; 5 6 |
134 |
124 20 2 133 64
|
decaddi |
⊢ ( ( 7 · 8 ) + 3 ) = ; 5 9 |
135 |
1 54 23 2 123 111 6 8 124 131 134
|
decmac |
⊢ ( ( ; 1 7 · 8 ) + 3 ) = ; ; 1 3 9 |
136 |
22 54 2 10
|
declti |
⊢ 3 < ; 1 7 |
137 |
122 6 13 135 136
|
ndvdsi |
⊢ ¬ ; 1 7 ∥ ; ; 1 3 9 |
138 |
1 4
|
decnncl |
⊢ ; 1 9 ∈ ℕ |
139 |
55
|
mullidi |
⊢ ( 1 · 7 ) = 7 |
140 |
139 57
|
oveq12i |
⊢ ( ( 1 · 7 ) + ( 0 + 6 ) ) = ( 7 + 6 ) |
141 |
140 59
|
eqtri |
⊢ ( ( 1 · 7 ) + ( 0 + 6 ) ) = ; 1 3 |
142 |
20 2 20 62 65
|
decaddi |
⊢ ( ( 9 · 7 ) + 6 ) = ; 6 9 |
143 |
1 8 23 20 52 53 54 8 20 141 142
|
decmac |
⊢ ( ( ; 1 9 · 7 ) + 6 ) = ; ; 1 3 9 |
144 |
|
6lt10 |
⊢ 6 < ; 1 0 |
145 |
22 8 20 144
|
declti |
⊢ 6 < ; 1 9 |
146 |
138 54 51 143 145
|
ndvdsi |
⊢ ¬ ; 1 9 ∥ ; ; 1 3 9 |
147 |
29 13
|
decnncl |
⊢ ; 2 3 ∈ ℕ |
148 |
|
eqid |
⊢ ; 2 3 = ; 2 3 |
149 |
|
6t2e12 |
⊢ ( 6 · 2 ) = ; 1 2 |
150 |
38 75 149
|
mulcomli |
⊢ ( 2 · 6 ) = ; 1 2 |
151 |
1 29 30 150
|
decsuc |
⊢ ( ( 2 · 6 ) + 1 ) = ; 1 3 |
152 |
29 2 1 148 20 8 1 151 41
|
decrmac |
⊢ ( ( ; 2 3 · 6 ) + 1 ) = ; ; 1 3 9 |
153 |
|
2nn |
⊢ 2 ∈ ℕ |
154 |
153 2 1 15
|
declti |
⊢ 1 < ; 2 3 |
155 |
147 20 22 152 154
|
ndvdsi |
⊢ ¬ ; 2 3 ∥ ; ; 1 3 9 |
156 |
5 12 16 19 44 48 69 98 121 137 146 155
|
prmlem2 |
⊢ ; ; 1 3 9 ∈ ℙ |