Description: 139 is a prime number. (Contributed by Mario Carneiro, 19-Feb-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | 139prm | ⊢ ; ; 1 3 9 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
2 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
3 | 1 2 | deccl | ⊢ ; 1 3 ∈ ℕ0 |
4 | 9nn | ⊢ 9 ∈ ℕ | |
5 | 3 4 | decnncl | ⊢ ; ; 1 3 9 ∈ ℕ |
6 | 8nn0 | ⊢ 8 ∈ ℕ0 | |
7 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
8 | 9nn0 | ⊢ 9 ∈ ℕ0 | |
9 | 1lt8 | ⊢ 1 < 8 | |
10 | 3lt10 | ⊢ 3 < ; 1 0 | |
11 | 9lt10 | ⊢ 9 < ; 1 0 | |
12 | 1 6 2 7 8 1 9 10 11 | 3decltc | ⊢ ; ; 1 3 9 < ; ; 8 4 1 |
13 | 3nn | ⊢ 3 ∈ ℕ | |
14 | 1 13 | decnncl | ⊢ ; 1 3 ∈ ℕ |
15 | 1lt10 | ⊢ 1 < ; 1 0 | |
16 | 14 8 1 15 | declti | ⊢ 1 < ; ; 1 3 9 |
17 | 4t2e8 | ⊢ ( 4 · 2 ) = 8 | |
18 | df-9 | ⊢ 9 = ( 8 + 1 ) | |
19 | 3 7 17 18 | dec2dvds | ⊢ ¬ 2 ∥ ; ; 1 3 9 |
20 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
21 | 7 20 | deccl | ⊢ ; 4 6 ∈ ℕ0 |
22 | 1nn | ⊢ 1 ∈ ℕ | |
23 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
24 | eqid | ⊢ ; 4 6 = ; 4 6 | |
25 | 1 | dec0h | ⊢ 1 = ; 0 1 |
26 | ax-1cn | ⊢ 1 ∈ ℂ | |
27 | 26 | addid2i | ⊢ ( 0 + 1 ) = 1 |
28 | 27 | oveq2i | ⊢ ( ( 3 · 4 ) + ( 0 + 1 ) ) = ( ( 3 · 4 ) + 1 ) |
29 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
30 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
31 | 7 | nn0cni | ⊢ 4 ∈ ℂ |
32 | 3cn | ⊢ 3 ∈ ℂ | |
33 | 4t3e12 | ⊢ ( 4 · 3 ) = ; 1 2 | |
34 | 31 32 33 | mulcomli | ⊢ ( 3 · 4 ) = ; 1 2 |
35 | 1 29 30 34 | decsuc | ⊢ ( ( 3 · 4 ) + 1 ) = ; 1 3 |
36 | 28 35 | eqtri | ⊢ ( ( 3 · 4 ) + ( 0 + 1 ) ) = ; 1 3 |
37 | 8p1e9 | ⊢ ( 8 + 1 ) = 9 | |
38 | 20 | nn0cni | ⊢ 6 ∈ ℂ |
39 | 6t3e18 | ⊢ ( 6 · 3 ) = ; 1 8 | |
40 | 38 32 39 | mulcomli | ⊢ ( 3 · 6 ) = ; 1 8 |
41 | 1 6 37 40 | decsuc | ⊢ ( ( 3 · 6 ) + 1 ) = ; 1 9 |
42 | 7 20 23 1 24 25 2 8 1 36 41 | decma2c | ⊢ ( ( 3 · ; 4 6 ) + 1 ) = ; ; 1 3 9 |
43 | 1lt3 | ⊢ 1 < 3 | |
44 | 13 21 22 42 43 | ndvdsi | ⊢ ¬ 3 ∥ ; ; 1 3 9 |
45 | 4nn | ⊢ 4 ∈ ℕ | |
46 | 4lt5 | ⊢ 4 < 5 | |
47 | 5p4e9 | ⊢ ( 5 + 4 ) = 9 | |
48 | 3 45 46 47 | dec5dvds2 | ⊢ ¬ 5 ∥ ; ; 1 3 9 |
49 | 7nn | ⊢ 7 ∈ ℕ | |
50 | 1 8 | deccl | ⊢ ; 1 9 ∈ ℕ0 |
51 | 6nn | ⊢ 6 ∈ ℕ | |
52 | eqid | ⊢ ; 1 9 = ; 1 9 | |
53 | 20 | dec0h | ⊢ 6 = ; 0 6 |
54 | 7nn0 | ⊢ 7 ∈ ℕ0 | |
55 | 7cn | ⊢ 7 ∈ ℂ | |
56 | 55 | mulid1i | ⊢ ( 7 · 1 ) = 7 |
57 | 38 | addid2i | ⊢ ( 0 + 6 ) = 6 |
58 | 56 57 | oveq12i | ⊢ ( ( 7 · 1 ) + ( 0 + 6 ) ) = ( 7 + 6 ) |
59 | 7p6e13 | ⊢ ( 7 + 6 ) = ; 1 3 | |
60 | 58 59 | eqtri | ⊢ ( ( 7 · 1 ) + ( 0 + 6 ) ) = ; 1 3 |
61 | 9cn | ⊢ 9 ∈ ℂ | |
62 | 9t7e63 | ⊢ ( 9 · 7 ) = ; 6 3 | |
63 | 61 55 62 | mulcomli | ⊢ ( 7 · 9 ) = ; 6 3 |
64 | 6p3e9 | ⊢ ( 6 + 3 ) = 9 | |
65 | 38 32 64 | addcomli | ⊢ ( 3 + 6 ) = 9 |
66 | 20 2 20 63 65 | decaddi | ⊢ ( ( 7 · 9 ) + 6 ) = ; 6 9 |
67 | 1 8 23 20 52 53 54 8 20 60 66 | decma2c | ⊢ ( ( 7 · ; 1 9 ) + 6 ) = ; ; 1 3 9 |
68 | 6lt7 | ⊢ 6 < 7 | |
69 | 49 50 51 67 68 | ndvdsi | ⊢ ¬ 7 ∥ ; ; 1 3 9 |
70 | 1 22 | decnncl | ⊢ ; 1 1 ∈ ℕ |
71 | 1 29 | deccl | ⊢ ; 1 2 ∈ ℕ0 |
72 | eqid | ⊢ ; 1 2 = ; 1 2 | |
73 | 54 | dec0h | ⊢ 7 = ; 0 7 |
74 | 1 1 | deccl | ⊢ ; 1 1 ∈ ℕ0 |
75 | 2cn | ⊢ 2 ∈ ℂ | |
76 | 75 | addid2i | ⊢ ( 0 + 2 ) = 2 |
77 | 76 | oveq2i | ⊢ ( ( ; 1 1 · 1 ) + ( 0 + 2 ) ) = ( ( ; 1 1 · 1 ) + 2 ) |
78 | 70 | nncni | ⊢ ; 1 1 ∈ ℂ |
79 | 78 | mulid1i | ⊢ ( ; 1 1 · 1 ) = ; 1 1 |
80 | 1p2e3 | ⊢ ( 1 + 2 ) = 3 | |
81 | 1 1 29 79 80 | decaddi | ⊢ ( ( ; 1 1 · 1 ) + 2 ) = ; 1 3 |
82 | 77 81 | eqtri | ⊢ ( ( ; 1 1 · 1 ) + ( 0 + 2 ) ) = ; 1 3 |
83 | eqid | ⊢ ; 1 1 = ; 1 1 | |
84 | 75 | mulid2i | ⊢ ( 1 · 2 ) = 2 |
85 | 00id | ⊢ ( 0 + 0 ) = 0 | |
86 | 84 85 | oveq12i | ⊢ ( ( 1 · 2 ) + ( 0 + 0 ) ) = ( 2 + 0 ) |
87 | 75 | addid1i | ⊢ ( 2 + 0 ) = 2 |
88 | 86 87 | eqtri | ⊢ ( ( 1 · 2 ) + ( 0 + 0 ) ) = 2 |
89 | 84 | oveq1i | ⊢ ( ( 1 · 2 ) + 7 ) = ( 2 + 7 ) |
90 | 7p2e9 | ⊢ ( 7 + 2 ) = 9 | |
91 | 55 75 90 | addcomli | ⊢ ( 2 + 7 ) = 9 |
92 | 8 | dec0h | ⊢ 9 = ; 0 9 |
93 | 89 91 92 | 3eqtri | ⊢ ( ( 1 · 2 ) + 7 ) = ; 0 9 |
94 | 1 1 23 54 83 73 29 8 23 88 93 | decmac | ⊢ ( ( ; 1 1 · 2 ) + 7 ) = ; 2 9 |
95 | 1 29 23 54 72 73 74 8 29 82 94 | decma2c | ⊢ ( ( ; 1 1 · ; 1 2 ) + 7 ) = ; ; 1 3 9 |
96 | 7lt10 | ⊢ 7 < ; 1 0 | |
97 | 22 1 54 96 | declti | ⊢ 7 < ; 1 1 |
98 | 70 71 49 95 97 | ndvdsi | ⊢ ¬ ; 1 1 ∥ ; ; 1 3 9 |
99 | 10nn0 | ⊢ ; 1 0 ∈ ℕ0 | |
100 | eqid | ⊢ ; 1 0 = ; 1 0 | |
101 | eqid | ⊢ ; 1 3 = ; 1 3 | |
102 | 23 | dec0h | ⊢ 0 = ; 0 0 |
103 | 85 102 | eqtri | ⊢ ( 0 + 0 ) = ; 0 0 |
104 | 26 | mulid1i | ⊢ ( 1 · 1 ) = 1 |
105 | 104 85 | oveq12i | ⊢ ( ( 1 · 1 ) + ( 0 + 0 ) ) = ( 1 + 0 ) |
106 | 26 | addid1i | ⊢ ( 1 + 0 ) = 1 |
107 | 105 106 | eqtri | ⊢ ( ( 1 · 1 ) + ( 0 + 0 ) ) = 1 |
108 | 32 | mulid1i | ⊢ ( 3 · 1 ) = 3 |
109 | 108 | oveq1i | ⊢ ( ( 3 · 1 ) + 0 ) = ( 3 + 0 ) |
110 | 32 | addid1i | ⊢ ( 3 + 0 ) = 3 |
111 | 2 | dec0h | ⊢ 3 = ; 0 3 |
112 | 109 110 111 | 3eqtri | ⊢ ( ( 3 · 1 ) + 0 ) = ; 0 3 |
113 | 1 2 23 23 101 103 1 2 23 107 112 | decmac | ⊢ ( ( ; 1 3 · 1 ) + ( 0 + 0 ) ) = ; 1 3 |
114 | 3 | nn0cni | ⊢ ; 1 3 ∈ ℂ |
115 | 114 | mul01i | ⊢ ( ; 1 3 · 0 ) = 0 |
116 | 115 | oveq1i | ⊢ ( ( ; 1 3 · 0 ) + 9 ) = ( 0 + 9 ) |
117 | 61 | addid2i | ⊢ ( 0 + 9 ) = 9 |
118 | 116 117 92 | 3eqtri | ⊢ ( ( ; 1 3 · 0 ) + 9 ) = ; 0 9 |
119 | 1 23 23 8 100 92 3 8 23 113 118 | decma2c | ⊢ ( ( ; 1 3 · ; 1 0 ) + 9 ) = ; ; 1 3 9 |
120 | 22 2 8 11 | declti | ⊢ 9 < ; 1 3 |
121 | 14 99 4 119 120 | ndvdsi | ⊢ ¬ ; 1 3 ∥ ; ; 1 3 9 |
122 | 1 49 | decnncl | ⊢ ; 1 7 ∈ ℕ |
123 | eqid | ⊢ ; 1 7 = ; 1 7 | |
124 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
125 | 8cn | ⊢ 8 ∈ ℂ | |
126 | 125 | mulid2i | ⊢ ( 1 · 8 ) = 8 |
127 | 5cn | ⊢ 5 ∈ ℂ | |
128 | 127 | addid2i | ⊢ ( 0 + 5 ) = 5 |
129 | 126 128 | oveq12i | ⊢ ( ( 1 · 8 ) + ( 0 + 5 ) ) = ( 8 + 5 ) |
130 | 8p5e13 | ⊢ ( 8 + 5 ) = ; 1 3 | |
131 | 129 130 | eqtri | ⊢ ( ( 1 · 8 ) + ( 0 + 5 ) ) = ; 1 3 |
132 | 8t7e56 | ⊢ ( 8 · 7 ) = ; 5 6 | |
133 | 125 55 132 | mulcomli | ⊢ ( 7 · 8 ) = ; 5 6 |
134 | 124 20 2 133 64 | decaddi | ⊢ ( ( 7 · 8 ) + 3 ) = ; 5 9 |
135 | 1 54 23 2 123 111 6 8 124 131 134 | decmac | ⊢ ( ( ; 1 7 · 8 ) + 3 ) = ; ; 1 3 9 |
136 | 22 54 2 10 | declti | ⊢ 3 < ; 1 7 |
137 | 122 6 13 135 136 | ndvdsi | ⊢ ¬ ; 1 7 ∥ ; ; 1 3 9 |
138 | 1 4 | decnncl | ⊢ ; 1 9 ∈ ℕ |
139 | 55 | mulid2i | ⊢ ( 1 · 7 ) = 7 |
140 | 139 57 | oveq12i | ⊢ ( ( 1 · 7 ) + ( 0 + 6 ) ) = ( 7 + 6 ) |
141 | 140 59 | eqtri | ⊢ ( ( 1 · 7 ) + ( 0 + 6 ) ) = ; 1 3 |
142 | 20 2 20 62 65 | decaddi | ⊢ ( ( 9 · 7 ) + 6 ) = ; 6 9 |
143 | 1 8 23 20 52 53 54 8 20 141 142 | decmac | ⊢ ( ( ; 1 9 · 7 ) + 6 ) = ; ; 1 3 9 |
144 | 6lt10 | ⊢ 6 < ; 1 0 | |
145 | 22 8 20 144 | declti | ⊢ 6 < ; 1 9 |
146 | 138 54 51 143 145 | ndvdsi | ⊢ ¬ ; 1 9 ∥ ; ; 1 3 9 |
147 | 29 13 | decnncl | ⊢ ; 2 3 ∈ ℕ |
148 | eqid | ⊢ ; 2 3 = ; 2 3 | |
149 | 6t2e12 | ⊢ ( 6 · 2 ) = ; 1 2 | |
150 | 38 75 149 | mulcomli | ⊢ ( 2 · 6 ) = ; 1 2 |
151 | 1 29 30 150 | decsuc | ⊢ ( ( 2 · 6 ) + 1 ) = ; 1 3 |
152 | 29 2 1 148 20 8 1 151 41 | decrmac | ⊢ ( ( ; 2 3 · 6 ) + 1 ) = ; ; 1 3 9 |
153 | 2nn | ⊢ 2 ∈ ℕ | |
154 | 153 2 1 15 | declti | ⊢ 1 < ; 2 3 |
155 | 147 20 22 152 154 | ndvdsi | ⊢ ¬ ; 2 3 ∥ ; ; 1 3 9 |
156 | 5 12 16 19 44 48 69 98 121 137 146 155 | prmlem2 | ⊢ ; ; 1 3 9 ∈ ℙ |