Step |
Hyp |
Ref |
Expression |
1 |
|
an2anr |
⊢ ( ( ( 𝜓 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜑 ) ) ↔ ( ( 𝜒 ∧ 𝜓 ) ∧ ( 𝜑 ∧ 𝜃 ) ) ) |
2 |
|
an2anr |
⊢ ( ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜓 ) ) ↔ ( ( 𝜒 ∧ 𝜑 ) ∧ ( 𝜓 ∧ 𝜃 ) ) ) |
3 |
|
an4 |
⊢ ( ( ( 𝜒 ∧ 𝜑 ) ∧ ( 𝜓 ∧ 𝜃 ) ) ↔ ( ( 𝜒 ∧ 𝜓 ) ∧ ( 𝜑 ∧ 𝜃 ) ) ) |
4 |
2 3
|
bitri |
⊢ ( ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜓 ) ) ↔ ( ( 𝜒 ∧ 𝜓 ) ∧ ( 𝜑 ∧ 𝜃 ) ) ) |
5 |
|
an43 |
⊢ ( ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜓 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜒 ∧ 𝜃 ) ) ) |
6 |
1 4 5
|
3bitr2ri |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜒 ∧ 𝜃 ) ) ↔ ( ( 𝜓 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜑 ) ) ) |
7 |
|
3an4anass |
⊢ ( ( ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ∧ 𝜑 ) ↔ ( ( 𝜓 ∧ 𝜒 ) ∧ ( 𝜃 ∧ 𝜑 ) ) ) |
8 |
|
ancom |
⊢ ( ( ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ∧ 𝜑 ) ↔ ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ) ) |
9 |
6 7 8
|
3bitr2ri |
⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜒 ∧ 𝜃 ) ) ) |