Metamath Proof Explorer


Theorem 13prm

Description: 13 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 13prm 1 3 ∈ ℙ

Proof

Step Hyp Ref Expression
1 1nn0 1 ∈ ℕ0
2 3nn 3 ∈ ℕ
3 1 2 decnncl 1 3 ∈ ℕ
4 1nn 1 ∈ ℕ
5 3nn0 3 ∈ ℕ0
6 1lt10 1 < 1 0
7 4 5 1 6 declti 1 < 1 3
8 2cn 2 ∈ ℂ
9 8 mulid2i ( 1 · 2 ) = 2
10 df-3 3 = ( 2 + 1 )
11 1 1 9 10 dec2dvds ¬ 2 ∥ 1 3
12 4nn0 4 ∈ ℕ0
13 2nn0 2 ∈ ℕ0
14 2p1e3 ( 2 + 1 ) = 3
15 4cn 4 ∈ ℂ
16 3cn 3 ∈ ℂ
17 4t3e12 ( 4 · 3 ) = 1 2
18 15 16 17 mulcomli ( 3 · 4 ) = 1 2
19 1 13 14 18 decsuc ( ( 3 · 4 ) + 1 ) = 1 3
20 1lt3 1 < 3
21 2 12 4 19 20 ndvdsi ¬ 3 ∥ 1 3
22 5nn0 5 ∈ ℕ0
23 3lt10 3 < 1 0
24 1lt2 1 < 2
25 1 13 5 22 23 24 decltc 1 3 < 2 5
26 3 7 11 21 25 prmlem1 1 3 ∈ ℙ