Metamath Proof Explorer


Theorem 17prm

Description: 17 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 17prm 1 7 ∈ ℙ

Proof

Step Hyp Ref Expression
1 1nn0 1 ∈ ℕ0
2 7nn 7 ∈ ℕ
3 1 2 decnncl 1 7 ∈ ℕ
4 1nn 1 ∈ ℕ
5 7nn0 7 ∈ ℕ0
6 1lt10 1 < 1 0
7 4 5 1 6 declti 1 < 1 7
8 3nn0 3 ∈ ℕ0
9 3t2e6 ( 3 · 2 ) = 6
10 df-7 7 = ( 6 + 1 )
11 1 8 9 10 dec2dvds ¬ 2 ∥ 1 7
12 3nn 3 ∈ ℕ
13 5nn0 5 ∈ ℕ0
14 2nn 2 ∈ ℕ
15 2nn0 2 ∈ ℕ0
16 5cn 5 ∈ ℂ
17 3cn 3 ∈ ℂ
18 5t3e15 ( 5 · 3 ) = 1 5
19 16 17 18 mulcomli ( 3 · 5 ) = 1 5
20 5p2e7 ( 5 + 2 ) = 7
21 1 13 15 19 20 decaddi ( ( 3 · 5 ) + 2 ) = 1 7
22 2lt3 2 < 3
23 12 13 14 21 22 ndvdsi ¬ 3 ∥ 1 7
24 7lt10 7 < 1 0
25 1lt2 1 < 2
26 1 15 5 13 24 25 decltc 1 7 < 2 5
27 3 7 11 23 26 prmlem1 1 7 ∈ ℙ