Step |
Hyp |
Ref |
Expression |
1 |
|
19.21v |
⊢ ( ∀ 𝑦 ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → ∀ 𝑦 𝜓 ) ) |
2 |
1
|
exbii |
⊢ ( ∃ 𝑥 ∀ 𝑦 ( 𝜑 → 𝜓 ) ↔ ∃ 𝑥 ( 𝜑 → ∀ 𝑦 𝜓 ) ) |
3 |
|
nfv |
⊢ Ⅎ 𝑥 𝜓 |
4 |
3
|
nfal |
⊢ Ⅎ 𝑥 ∀ 𝑦 𝜓 |
5 |
4
|
19.36 |
⊢ ( ∃ 𝑥 ( 𝜑 → ∀ 𝑦 𝜓 ) ↔ ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ) |
6 |
|
19.36v |
⊢ ( ∃ 𝑥 ( 𝜑 → 𝜓 ) ↔ ( ∀ 𝑥 𝜑 → 𝜓 ) ) |
7 |
6
|
albii |
⊢ ( ∀ 𝑦 ∃ 𝑥 ( 𝜑 → 𝜓 ) ↔ ∀ 𝑦 ( ∀ 𝑥 𝜑 → 𝜓 ) ) |
8 |
|
nfv |
⊢ Ⅎ 𝑦 𝜑 |
9 |
8
|
nfal |
⊢ Ⅎ 𝑦 ∀ 𝑥 𝜑 |
10 |
9
|
19.21 |
⊢ ( ∀ 𝑦 ( ∀ 𝑥 𝜑 → 𝜓 ) ↔ ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ) |
11 |
7 10
|
bitr2i |
⊢ ( ( ∀ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) ↔ ∀ 𝑦 ∃ 𝑥 ( 𝜑 → 𝜓 ) ) |
12 |
2 5 11
|
3bitri |
⊢ ( ∃ 𝑥 ∀ 𝑦 ( 𝜑 → 𝜓 ) ↔ ∀ 𝑦 ∃ 𝑥 ( 𝜑 → 𝜓 ) ) |