Metamath Proof Explorer
Description: Theorem 19.16 of Margaris p. 90. (Contributed by NM, 12-Mar-1993)
|
|
Ref |
Expression |
|
Hypothesis |
19.16.1 |
⊢ Ⅎ 𝑥 𝜑 |
|
Assertion |
19.16 |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) → ( 𝜑 ↔ ∀ 𝑥 𝜓 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
19.16.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
1
|
19.3 |
⊢ ( ∀ 𝑥 𝜑 ↔ 𝜑 ) |
3 |
|
albi |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥 𝜓 ) ) |
4 |
2 3
|
bitr3id |
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝜓 ) → ( 𝜑 ↔ ∀ 𝑥 𝜓 ) ) |