Metamath Proof Explorer


Theorem 19.21-2

Description: Version of 19.21 with two quantifiers. (Contributed by NM, 4-Feb-2005)

Ref Expression
Hypotheses 19.21-2.1 𝑥 𝜑
19.21-2.2 𝑦 𝜑
Assertion 19.21-2 ( ∀ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ( 𝜑 → ∀ 𝑥𝑦 𝜓 ) )

Proof

Step Hyp Ref Expression
1 19.21-2.1 𝑥 𝜑
2 19.21-2.2 𝑦 𝜑
3 2 19.21 ( ∀ 𝑦 ( 𝜑𝜓 ) ↔ ( 𝜑 → ∀ 𝑦 𝜓 ) )
4 3 albii ( ∀ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ∀ 𝑥 ( 𝜑 → ∀ 𝑦 𝜓 ) )
5 1 19.21 ( ∀ 𝑥 ( 𝜑 → ∀ 𝑦 𝜓 ) ↔ ( 𝜑 → ∀ 𝑥𝑦 𝜓 ) )
6 4 5 bitri ( ∀ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ( 𝜑 → ∀ 𝑥𝑦 𝜓 ) )