Metamath Proof Explorer


Theorem 19.23

Description: Theorem 19.23 of Margaris p. 90. See 19.23v for a version requiring fewer axioms. (Contributed by NM, 24-Jan-1993) (Revised by Mario Carneiro, 24-Sep-2016)

Ref Expression
Hypothesis 19.23.1 𝑥 𝜓
Assertion 19.23 ( ∀ 𝑥 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 19.23.1 𝑥 𝜓
2 19.23t ( Ⅎ 𝑥 𝜓 → ( ∀ 𝑥 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥 𝜑𝜓 ) ) )
3 1 2 ax-mp ( ∀ 𝑥 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥 𝜑𝜓 ) )