Metamath Proof Explorer


Theorem 19.23h

Description: Theorem 19.23 of Margaris p. 90. See 19.23 . (Contributed by NM, 24-Jan-1993) (Revised by Mario Carneiro, 24-Sep-2016) (Proof shortened by Wolf Lammen, 1-Jan-2018)

Ref Expression
Hypothesis 19.23h.1 ( 𝜓 → ∀ 𝑥 𝜓 )
Assertion 19.23h ( ∀ 𝑥 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 19.23h.1 ( 𝜓 → ∀ 𝑥 𝜓 )
2 1 nf5i 𝑥 𝜓
3 2 19.23 ( ∀ 𝑥 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥 𝜑𝜓 ) )