Metamath Proof Explorer


Theorem 19.23v

Description: Version of 19.23 with a disjoint variable condition instead of a nonfreeness hypothesis. (Contributed by NM, 28-Jun-1998) Reduce dependencies on axioms. (Revised by Wolf Lammen, 11-Jan-2020) Remove dependency on ax-6 . (Revised by Rohan Ridenour, 15-Apr-2022)

Ref Expression
Assertion 19.23v ( ∀ 𝑥 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 exim ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∃ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) )
2 ax5e ( ∃ 𝑥 𝜓𝜓 )
3 1 2 syl6 ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∃ 𝑥 𝜑𝜓 ) )
4 ax-5 ( 𝜓 → ∀ 𝑥 𝜓 )
5 4 imim2i ( ( ∃ 𝑥 𝜑𝜓 ) → ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) )
6 19.38 ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) → ∀ 𝑥 ( 𝜑𝜓 ) )
7 5 6 syl ( ( ∃ 𝑥 𝜑𝜓 ) → ∀ 𝑥 ( 𝜑𝜓 ) )
8 3 7 impbii ( ∀ 𝑥 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥 𝜑𝜓 ) )