Metamath Proof Explorer


Theorem 19.23vv

Description: Theorem 19.23v extended to two variables. (Contributed by NM, 10-Aug-2004)

Ref Expression
Assertion 19.23vv ( ∀ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥𝑦 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 19.23v ( ∀ 𝑦 ( 𝜑𝜓 ) ↔ ( ∃ 𝑦 𝜑𝜓 ) )
2 1 albii ( ∀ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ∀ 𝑥 ( ∃ 𝑦 𝜑𝜓 ) )
3 19.23v ( ∀ 𝑥 ( ∃ 𝑦 𝜑𝜓 ) ↔ ( ∃ 𝑥𝑦 𝜑𝜓 ) )
4 2 3 bitri ( ∀ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥𝑦 𝜑𝜓 ) )