Description: Theorem 19.23v extended to two variables. (Contributed by NM, 10-Aug-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | 19.23vv | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝜓 ) ↔ ( ∃ 𝑥 ∃ 𝑦 𝜑 → 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.23v | ⊢ ( ∀ 𝑦 ( 𝜑 → 𝜓 ) ↔ ( ∃ 𝑦 𝜑 → 𝜓 ) ) | |
2 | 1 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝜓 ) ↔ ∀ 𝑥 ( ∃ 𝑦 𝜑 → 𝜓 ) ) |
3 | 19.23v | ⊢ ( ∀ 𝑥 ( ∃ 𝑦 𝜑 → 𝜓 ) ↔ ( ∃ 𝑥 ∃ 𝑦 𝜑 → 𝜓 ) ) | |
4 | 2 3 | bitri | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝜓 ) ↔ ( ∃ 𝑥 ∃ 𝑦 𝜑 → 𝜓 ) ) |