Description: Theorem 19.26 with two quantifiers. (Contributed by NM, 3-Feb-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | 19.26-2 | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∀ 𝑦 𝜑 ∧ ∀ 𝑥 ∀ 𝑦 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.26 | ⊢ ( ∀ 𝑦 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑦 𝜑 ∧ ∀ 𝑦 𝜓 ) ) | |
2 | 1 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 ∧ 𝜓 ) ↔ ∀ 𝑥 ( ∀ 𝑦 𝜑 ∧ ∀ 𝑦 𝜓 ) ) |
3 | 19.26 | ⊢ ( ∀ 𝑥 ( ∀ 𝑦 𝜑 ∧ ∀ 𝑦 𝜓 ) ↔ ( ∀ 𝑥 ∀ 𝑦 𝜑 ∧ ∀ 𝑥 ∀ 𝑦 𝜓 ) ) | |
4 | 2 3 | bitri | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∀ 𝑦 𝜑 ∧ ∀ 𝑥 ∀ 𝑦 𝜓 ) ) |