Description: Theorem 19.28 of Margaris p. 90. See 19.28v for a version requiring fewer axioms. (Contributed by NM, 1-Aug-1993)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 19.28.1 | ⊢ Ⅎ 𝑥 𝜑 | |
Assertion | 19.28 | ⊢ ( ∀ 𝑥 ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ∀ 𝑥 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.28.1 | ⊢ Ⅎ 𝑥 𝜑 | |
2 | 19.26 | ⊢ ( ∀ 𝑥 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) ) | |
3 | 1 | 19.3 | ⊢ ( ∀ 𝑥 𝜑 ↔ 𝜑 ) |
4 | 3 | anbi1i | ⊢ ( ( ∀ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) ↔ ( 𝜑 ∧ ∀ 𝑥 𝜓 ) ) |
5 | 2 4 | bitri | ⊢ ( ∀ 𝑥 ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ∀ 𝑥 𝜓 ) ) |