Metamath Proof Explorer


Theorem 19.29

Description: Theorem 19.29 of Margaris p. 90. See also 19.29r . (Contributed by NM, 21-Jun-1993) (Proof shortened by Andrew Salmon, 13-May-2011)

Ref Expression
Assertion 19.29 ( ( ∀ 𝑥 𝜑 ∧ ∃ 𝑥 𝜓 ) → ∃ 𝑥 ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 pm3.2 ( 𝜑 → ( 𝜓 → ( 𝜑𝜓 ) ) )
2 1 aleximi ( ∀ 𝑥 𝜑 → ( ∃ 𝑥 𝜓 → ∃ 𝑥 ( 𝜑𝜓 ) ) )
3 2 imp ( ( ∀ 𝑥 𝜑 ∧ ∃ 𝑥 𝜓 ) → ∃ 𝑥 ( 𝜑𝜓 ) )