Metamath Proof Explorer


Theorem 19.29r

Description: Variation of 19.29 . (Contributed by NM, 18-Aug-1993) (Proof shortened by Wolf Lammen, 12-Nov-2020)

Ref Expression
Assertion 19.29r ( ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) → ∃ 𝑥 ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 pm3.21 ( 𝜓 → ( 𝜑 → ( 𝜑𝜓 ) ) )
2 1 aleximi ( ∀ 𝑥 𝜓 → ( ∃ 𝑥 𝜑 → ∃ 𝑥 ( 𝜑𝜓 ) ) )
3 2 impcom ( ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) → ∃ 𝑥 ( 𝜑𝜓 ) )