Description: Theorem 19.30 of Margaris p. 90. (Contributed by NM, 12-Mar-1993) (Proof shortened by Andrew Salmon, 25-May-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | 19.30 | ⊢ ( ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) → ( ∀ 𝑥 𝜑 ∨ ∃ 𝑥 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exnal | ⊢ ( ∃ 𝑥 ¬ 𝜑 ↔ ¬ ∀ 𝑥 𝜑 ) | |
2 | pm2.53 | ⊢ ( ( 𝜑 ∨ 𝜓 ) → ( ¬ 𝜑 → 𝜓 ) ) | |
3 | 2 | aleximi | ⊢ ( ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) → ( ∃ 𝑥 ¬ 𝜑 → ∃ 𝑥 𝜓 ) ) |
4 | 1 3 | syl5bir | ⊢ ( ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) → ( ¬ ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) ) |
5 | 4 | orrd | ⊢ ( ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) → ( ∀ 𝑥 𝜑 ∨ ∃ 𝑥 𝜓 ) ) |