Metamath Proof Explorer


Theorem 19.30

Description: Theorem 19.30 of Margaris p. 90. (Contributed by NM, 12-Mar-1993) (Proof shortened by Andrew Salmon, 25-May-2011)

Ref Expression
Assertion 19.30 ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∀ 𝑥 𝜑 ∨ ∃ 𝑥 𝜓 ) )

Proof

Step Hyp Ref Expression
1 exnal ( ∃ 𝑥 ¬ 𝜑 ↔ ¬ ∀ 𝑥 𝜑 )
2 pm2.53 ( ( 𝜑𝜓 ) → ( ¬ 𝜑𝜓 ) )
3 2 aleximi ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∃ 𝑥 ¬ 𝜑 → ∃ 𝑥 𝜓 ) )
4 1 3 syl5bir ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ¬ ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) )
5 4 orrd ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∀ 𝑥 𝜑 ∨ ∃ 𝑥 𝜓 ) )