Metamath Proof Explorer


Theorem 19.31

Description: Theorem 19.31 of Margaris p. 90. See 19.31v for a version requiring fewer axioms. (Contributed by NM, 14-May-1993)

Ref Expression
Hypothesis 19.31.1 𝑥 𝜓
Assertion 19.31 ( ∀ 𝑥 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 19.31.1 𝑥 𝜓
2 1 19.32 ( ∀ 𝑥 ( 𝜓𝜑 ) ↔ ( 𝜓 ∨ ∀ 𝑥 𝜑 ) )
3 orcom ( ( 𝜑𝜓 ) ↔ ( 𝜓𝜑 ) )
4 3 albii ( ∀ 𝑥 ( 𝜑𝜓 ) ↔ ∀ 𝑥 ( 𝜓𝜑 ) )
5 orcom ( ( ∀ 𝑥 𝜑𝜓 ) ↔ ( 𝜓 ∨ ∀ 𝑥 𝜑 ) )
6 2 4 5 3bitr4i ( ∀ 𝑥 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥 𝜑𝜓 ) )