Description: Theorem 19.31 of Margaris p. 90. See 19.31v for a version requiring fewer axioms. (Contributed by NM, 14-May-1993)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 19.31.1 | ⊢ Ⅎ 𝑥 𝜓 | |
Assertion | 19.31 | ⊢ ( ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) ↔ ( ∀ 𝑥 𝜑 ∨ 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.31.1 | ⊢ Ⅎ 𝑥 𝜓 | |
2 | 1 | 19.32 | ⊢ ( ∀ 𝑥 ( 𝜓 ∨ 𝜑 ) ↔ ( 𝜓 ∨ ∀ 𝑥 𝜑 ) ) |
3 | orcom | ⊢ ( ( 𝜑 ∨ 𝜓 ) ↔ ( 𝜓 ∨ 𝜑 ) ) | |
4 | 3 | albii | ⊢ ( ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) ↔ ∀ 𝑥 ( 𝜓 ∨ 𝜑 ) ) |
5 | orcom | ⊢ ( ( ∀ 𝑥 𝜑 ∨ 𝜓 ) ↔ ( 𝜓 ∨ ∀ 𝑥 𝜑 ) ) | |
6 | 2 4 5 | 3bitr4i | ⊢ ( ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) ↔ ( ∀ 𝑥 𝜑 ∨ 𝜓 ) ) |