Metamath Proof Explorer


Theorem 19.31v

Description: Version of 19.31 with a disjoint variable condition, requiring fewer axioms. (Contributed by BJ, 7-Mar-2020)

Ref Expression
Assertion 19.31v ( ∀ 𝑥 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 19.32v ( ∀ 𝑥 ( 𝜓𝜑 ) ↔ ( 𝜓 ∨ ∀ 𝑥 𝜑 ) )
2 orcom ( ( 𝜑𝜓 ) ↔ ( 𝜓𝜑 ) )
3 2 albii ( ∀ 𝑥 ( 𝜑𝜓 ) ↔ ∀ 𝑥 ( 𝜓𝜑 ) )
4 orcom ( ( ∀ 𝑥 𝜑𝜓 ) ↔ ( 𝜓 ∨ ∀ 𝑥 𝜑 ) )
5 1 3 4 3bitr4i ( ∀ 𝑥 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥 𝜑𝜓 ) )