Metamath Proof Explorer


Theorem 19.32

Description: Theorem 19.32 of Margaris p. 90. See 19.32v for a version requiring fewer axioms. (Contributed by NM, 14-May-1993) (Revised by Mario Carneiro, 24-Sep-2016)

Ref Expression
Hypothesis 19.32.1 𝑥 𝜑
Assertion 19.32 ( ∀ 𝑥 ( 𝜑𝜓 ) ↔ ( 𝜑 ∨ ∀ 𝑥 𝜓 ) )

Proof

Step Hyp Ref Expression
1 19.32.1 𝑥 𝜑
2 1 nfn 𝑥 ¬ 𝜑
3 2 19.21 ( ∀ 𝑥 ( ¬ 𝜑𝜓 ) ↔ ( ¬ 𝜑 → ∀ 𝑥 𝜓 ) )
4 df-or ( ( 𝜑𝜓 ) ↔ ( ¬ 𝜑𝜓 ) )
5 4 albii ( ∀ 𝑥 ( 𝜑𝜓 ) ↔ ∀ 𝑥 ( ¬ 𝜑𝜓 ) )
6 df-or ( ( 𝜑 ∨ ∀ 𝑥 𝜓 ) ↔ ( ¬ 𝜑 → ∀ 𝑥 𝜓 ) )
7 3 5 6 3bitr4i ( ∀ 𝑥 ( 𝜑𝜓 ) ↔ ( 𝜑 ∨ ∀ 𝑥 𝜓 ) )