Step |
Hyp |
Ref |
Expression |
1 |
|
ianor |
⊢ ( ¬ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑥 𝜓 ) ↔ ( ¬ ∃ 𝑥 𝜑 ∨ ¬ ∃ 𝑥 𝜓 ) ) |
2 |
|
alnex |
⊢ ( ∀ 𝑥 ¬ 𝜑 ↔ ¬ ∃ 𝑥 𝜑 ) |
3 |
|
pm2.53 |
⊢ ( ( 𝜑 ∨ 𝜓 ) → ( ¬ 𝜑 → 𝜓 ) ) |
4 |
3
|
al2imi |
⊢ ( ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) → ( ∀ 𝑥 ¬ 𝜑 → ∀ 𝑥 𝜓 ) ) |
5 |
2 4
|
syl5bir |
⊢ ( ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) → ( ¬ ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) ) |
6 |
|
olc |
⊢ ( ∀ 𝑥 𝜓 → ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 𝜓 ) ) |
7 |
5 6
|
syl6com |
⊢ ( ¬ ∃ 𝑥 𝜑 → ( ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) → ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 𝜓 ) ) ) |
8 |
|
19.30 |
⊢ ( ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) → ( ∀ 𝑥 𝜑 ∨ ∃ 𝑥 𝜓 ) ) |
9 |
8
|
orcomd |
⊢ ( ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) → ( ∃ 𝑥 𝜓 ∨ ∀ 𝑥 𝜑 ) ) |
10 |
9
|
ord |
⊢ ( ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) → ( ¬ ∃ 𝑥 𝜓 → ∀ 𝑥 𝜑 ) ) |
11 |
|
orc |
⊢ ( ∀ 𝑥 𝜑 → ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 𝜓 ) ) |
12 |
10 11
|
syl6com |
⊢ ( ¬ ∃ 𝑥 𝜓 → ( ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) → ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 𝜓 ) ) ) |
13 |
7 12
|
jaoi |
⊢ ( ( ¬ ∃ 𝑥 𝜑 ∨ ¬ ∃ 𝑥 𝜓 ) → ( ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) → ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 𝜓 ) ) ) |
14 |
1 13
|
sylbi |
⊢ ( ¬ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑥 𝜓 ) → ( ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) → ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 𝜓 ) ) ) |
15 |
|
19.33 |
⊢ ( ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 𝜓 ) → ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) ) |
16 |
14 15
|
impbid1 |
⊢ ( ¬ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑥 𝜓 ) → ( ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) ↔ ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 𝜓 ) ) ) |