Metamath Proof Explorer


Theorem 19.35

Description: Theorem 19.35 of Margaris p. 90. This theorem is useful for moving an implication (in the form of the right-hand side) into the scope of a single existential quantifier. (Contributed by NM, 12-Mar-1993) (Proof shortened by Wolf Lammen, 27-Jun-2014)

Ref Expression
Assertion 19.35 ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) )

Proof

Step Hyp Ref Expression
1 pm2.27 ( 𝜑 → ( ( 𝜑𝜓 ) → 𝜓 ) )
2 1 aleximi ( ∀ 𝑥 𝜑 → ( ∃ 𝑥 ( 𝜑𝜓 ) → ∃ 𝑥 𝜓 ) )
3 2 com12 ( ∃ 𝑥 ( 𝜑𝜓 ) → ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) )
4 exnal ( ∃ 𝑥 ¬ 𝜑 ↔ ¬ ∀ 𝑥 𝜑 )
5 pm2.21 ( ¬ 𝜑 → ( 𝜑𝜓 ) )
6 5 eximi ( ∃ 𝑥 ¬ 𝜑 → ∃ 𝑥 ( 𝜑𝜓 ) )
7 4 6 sylbir ( ¬ ∀ 𝑥 𝜑 → ∃ 𝑥 ( 𝜑𝜓 ) )
8 exa1 ( ∃ 𝑥 𝜓 → ∃ 𝑥 ( 𝜑𝜓 ) )
9 7 8 ja ( ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) → ∃ 𝑥 ( 𝜑𝜓 ) )
10 3 9 impbii ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) )