Metamath Proof Explorer


Theorem 19.35i

Description: Inference associated with 19.35 . (Contributed by NM, 21-Jun-1993)

Ref Expression
Hypothesis 19.35i.1 𝑥 ( 𝜑𝜓 )
Assertion 19.35i ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 )

Proof

Step Hyp Ref Expression
1 19.35i.1 𝑥 ( 𝜑𝜓 )
2 19.35 ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) )
3 1 2 mpbi ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 )