Metamath Proof Explorer
Description: Inference associated with 19.35 . (Contributed by NM, 12-Mar-1993)
|
|
Ref |
Expression |
|
Hypothesis |
19.35ri.1 |
⊢ ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) |
|
Assertion |
19.35ri |
⊢ ∃ 𝑥 ( 𝜑 → 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
19.35ri.1 |
⊢ ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) |
2 |
|
19.35 |
⊢ ( ∃ 𝑥 ( 𝜑 → 𝜓 ) ↔ ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) ) |
3 |
1 2
|
mpbir |
⊢ ∃ 𝑥 ( 𝜑 → 𝜓 ) |