Description: Theorem 19.36 of Margaris p. 90. See 19.36v for a version requiring fewer axioms. (Contributed by NM, 24-Jun-1993)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 19.36.1 | ⊢ Ⅎ 𝑥 𝜓 | |
Assertion | 19.36 | ⊢ ( ∃ 𝑥 ( 𝜑 → 𝜓 ) ↔ ( ∀ 𝑥 𝜑 → 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.36.1 | ⊢ Ⅎ 𝑥 𝜓 | |
2 | 19.35 | ⊢ ( ∃ 𝑥 ( 𝜑 → 𝜓 ) ↔ ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) ) | |
3 | 1 | 19.9 | ⊢ ( ∃ 𝑥 𝜓 ↔ 𝜓 ) |
4 | 3 | imbi2i | ⊢ ( ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) ↔ ( ∀ 𝑥 𝜑 → 𝜓 ) ) |
5 | 2 4 | bitri | ⊢ ( ∃ 𝑥 ( 𝜑 → 𝜓 ) ↔ ( ∀ 𝑥 𝜑 → 𝜓 ) ) |