Metamath Proof Explorer


Theorem 19.36

Description: Theorem 19.36 of Margaris p. 90. See 19.36v for a version requiring fewer axioms. (Contributed by NM, 24-Jun-1993)

Ref Expression
Hypothesis 19.36.1 𝑥 𝜓
Assertion 19.36 ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 19.36.1 𝑥 𝜓
2 19.35 ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) )
3 1 19.9 ( ∃ 𝑥 𝜓𝜓 )
4 3 imbi2i ( ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) ↔ ( ∀ 𝑥 𝜑𝜓 ) )
5 2 4 bitri ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥 𝜑𝜓 ) )