Metamath Proof Explorer


Theorem 19.36imv

Description: One direction of 19.36v that can be proven without ax-6 . (Contributed by Rohan Ridenour, 16-Apr-2022) (Proof shortened by Wolf Lammen, 22-Sep-2024)

Ref Expression
Assertion 19.36imv ( ∃ 𝑥 ( 𝜑𝜓 ) → ( ∀ 𝑥 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 pm2.27 ( 𝜑 → ( ( 𝜑𝜓 ) → 𝜓 ) )
2 1 aleximi ( ∀ 𝑥 𝜑 → ( ∃ 𝑥 ( 𝜑𝜓 ) → ∃ 𝑥 𝜓 ) )
3 ax5e ( ∃ 𝑥 𝜓𝜓 )
4 2 3 syl6com ( ∃ 𝑥 ( 𝜑𝜓 ) → ( ∀ 𝑥 𝜑𝜓 ) )