Description: Obsolete version of 19.36imv as of 22-Sep-2024. (Contributed by Rohan Ridenour, 16-Apr-2022) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | 19.36imvOLD | ⊢ ( ∃ 𝑥 ( 𝜑 → 𝜓 ) → ( ∀ 𝑥 𝜑 → 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.35 | ⊢ ( ∃ 𝑥 ( 𝜑 → 𝜓 ) ↔ ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) ) | |
2 | 1 | biimpi | ⊢ ( ∃ 𝑥 ( 𝜑 → 𝜓 ) → ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) ) |
3 | ax5e | ⊢ ( ∃ 𝑥 𝜓 → 𝜓 ) | |
4 | 2 3 | syl6 | ⊢ ( ∃ 𝑥 ( 𝜑 → 𝜓 ) → ( ∀ 𝑥 𝜑 → 𝜓 ) ) |