Metamath Proof Explorer


Theorem 19.36v

Description: Version of 19.36 with a disjoint variable condition instead of a nonfreeness hypothesis. (Contributed by NM, 18-Aug-1993) Reduce dependencies on axioms. (Revised by Wolf Lammen, 17-Jan-2020)

Ref Expression
Assertion 19.36v ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 19.35 ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) )
2 19.9v ( ∃ 𝑥 𝜓𝜓 )
3 2 imbi2i ( ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) ↔ ( ∀ 𝑥 𝜑𝜓 ) )
4 1 3 bitri ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥 𝜑𝜓 ) )