Metamath Proof Explorer


Theorem 19.37iv

Description: Inference associated with 19.37v . (Contributed by NM, 5-Aug-1993) Remove dependency on ax-6 . (Revised by Rohan Ridenour, 15-Apr-2022)

Ref Expression
Hypothesis 19.37iv.1 𝑥 ( 𝜑𝜓 )
Assertion 19.37iv ( 𝜑 → ∃ 𝑥 𝜓 )

Proof

Step Hyp Ref Expression
1 19.37iv.1 𝑥 ( 𝜑𝜓 )
2 19.37imv ( ∃ 𝑥 ( 𝜑𝜓 ) → ( 𝜑 → ∃ 𝑥 𝜓 ) )
3 1 2 ax-mp ( 𝜑 → ∃ 𝑥 𝜓 )