Metamath Proof Explorer


Theorem 19.37v

Description: Version of 19.37 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 21-Jun-1993)

Ref Expression
Assertion 19.37v ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ( 𝜑 → ∃ 𝑥 𝜓 ) )

Proof

Step Hyp Ref Expression
1 19.35 ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) )
2 19.3v ( ∀ 𝑥 𝜑𝜑 )
3 2 imbi1i ( ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) ↔ ( 𝜑 → ∃ 𝑥 𝜓 ) )
4 1 3 bitri ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ( 𝜑 → ∃ 𝑥 𝜓 ) )