Metamath Proof Explorer


Theorem 19.38a

Description: Under a nonfreeness hypothesis, the implication 19.38 can be strengthened to an equivalence. See also 19.38b . (Contributed by BJ, 3-Nov-2021) (Proof shortened by Wolf Lammen, 9-Jul-2022)

Ref Expression
Assertion 19.38a ( Ⅎ 𝑥 𝜑 → ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) ↔ ∀ 𝑥 ( 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 19.38 ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) → ∀ 𝑥 ( 𝜑𝜓 ) )
2 id ( Ⅎ 𝑥 𝜑 → Ⅎ 𝑥 𝜑 )
3 2 nfrd ( Ⅎ 𝑥 𝜑 → ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) )
4 alim ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∀ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) )
5 3 4 syl9 ( Ⅎ 𝑥 𝜑 → ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) ) )
6 1 5 impbid2 ( Ⅎ 𝑥 𝜑 → ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) ↔ ∀ 𝑥 ( 𝜑𝜓 ) ) )