Description: Under a nonfreeness hypothesis, the implication 19.38 can be strengthened to an equivalence. See also 19.38a . (Contributed by BJ, 3-Nov-2021) (Proof shortened by Wolf Lammen, 9-Jul-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | 19.38b | ⊢ ( Ⅎ 𝑥 𝜓 → ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) ↔ ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.38 | ⊢ ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝜓 ) ) | |
2 | exim | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ( ∃ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) ) | |
3 | id | ⊢ ( Ⅎ 𝑥 𝜓 → Ⅎ 𝑥 𝜓 ) | |
4 | 3 | nfrd | ⊢ ( Ⅎ 𝑥 𝜓 → ( ∃ 𝑥 𝜓 → ∀ 𝑥 𝜓 ) ) |
5 | 2 4 | syl9r | ⊢ ( Ⅎ 𝑥 𝜓 → ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) ) ) |
6 | 1 5 | impbid2 | ⊢ ( Ⅎ 𝑥 𝜓 → ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) ↔ ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) |