Metamath Proof Explorer


Theorem 19.38b

Description: Under a nonfreeness hypothesis, the implication 19.38 can be strengthened to an equivalence. See also 19.38a . (Contributed by BJ, 3-Nov-2021) (Proof shortened by Wolf Lammen, 9-Jul-2022)

Ref Expression
Assertion 19.38b ( Ⅎ 𝑥 𝜓 → ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) ↔ ∀ 𝑥 ( 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 19.38 ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) → ∀ 𝑥 ( 𝜑𝜓 ) )
2 exim ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∃ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) )
3 id ( Ⅎ 𝑥 𝜓 → Ⅎ 𝑥 𝜓 )
4 3 nfrd ( Ⅎ 𝑥 𝜓 → ( ∃ 𝑥 𝜓 → ∀ 𝑥 𝜓 ) )
5 2 4 syl9r ( Ⅎ 𝑥 𝜓 → ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) ) )
6 1 5 impbid2 ( Ⅎ 𝑥 𝜓 → ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) ↔ ∀ 𝑥 ( 𝜑𝜓 ) ) )