Metamath Proof Explorer


Theorem 19.40-2

Description: Theorem *11.42 in WhiteheadRussell p. 163. Theorem 19.40 of Margaris p. 90 with two quantifiers. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion 19.40-2 ( ∃ 𝑥𝑦 ( 𝜑𝜓 ) → ( ∃ 𝑥𝑦 𝜑 ∧ ∃ 𝑥𝑦 𝜓 ) )

Proof

Step Hyp Ref Expression
1 19.40 ( ∃ 𝑦 ( 𝜑𝜓 ) → ( ∃ 𝑦 𝜑 ∧ ∃ 𝑦 𝜓 ) )
2 1 eximi ( ∃ 𝑥𝑦 ( 𝜑𝜓 ) → ∃ 𝑥 ( ∃ 𝑦 𝜑 ∧ ∃ 𝑦 𝜓 ) )
3 19.40 ( ∃ 𝑥 ( ∃ 𝑦 𝜑 ∧ ∃ 𝑦 𝜓 ) → ( ∃ 𝑥𝑦 𝜑 ∧ ∃ 𝑥𝑦 𝜓 ) )
4 2 3 syl ( ∃ 𝑥𝑦 ( 𝜑𝜓 ) → ( ∃ 𝑥𝑦 𝜑 ∧ ∃ 𝑥𝑦 𝜓 ) )