| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sp |
⊢ ( ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) → ( 𝜓 → ∀ 𝑥 𝜓 ) ) |
| 2 |
|
pm3.21 |
⊢ ( 𝜓 → ( 𝜑 → ( 𝜑 ∧ 𝜓 ) ) ) |
| 3 |
2
|
a1i |
⊢ ( ( 𝜓 → ∀ 𝑥 𝜓 ) → ( 𝜓 → ( 𝜑 → ( 𝜑 ∧ 𝜓 ) ) ) ) |
| 4 |
3
|
al2imi |
⊢ ( ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) → ( ∀ 𝑥 𝜓 → ∀ 𝑥 ( 𝜑 → ( 𝜑 ∧ 𝜓 ) ) ) ) |
| 5 |
|
exim |
⊢ ( ∀ 𝑥 ( 𝜑 → ( 𝜑 ∧ 𝜓 ) ) → ( ∃ 𝑥 𝜑 → ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) |
| 6 |
4 5
|
syl6 |
⊢ ( ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) → ( ∀ 𝑥 𝜓 → ( ∃ 𝑥 𝜑 → ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) ) |
| 7 |
1 6
|
syld |
⊢ ( ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) → ( 𝜓 → ( ∃ 𝑥 𝜑 → ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) ) |
| 8 |
7
|
com23 |
⊢ ( ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) → ( ∃ 𝑥 𝜑 → ( 𝜓 → ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) ) |
| 9 |
8
|
impd |
⊢ ( ∀ 𝑥 ( 𝜓 → ∀ 𝑥 𝜓 ) → ( ( ∃ 𝑥 𝜑 ∧ 𝜓 ) → ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) |