Metamath Proof Explorer


Theorem 19.41vvv

Description: Version of 19.41 with three quantifiers and a disjoint variable condition requiring fewer axioms. (Contributed by NM, 30-Apr-1995)

Ref Expression
Assertion 19.41vvv ( ∃ 𝑥𝑦𝑧 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥𝑦𝑧 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 19.41vv ( ∃ 𝑦𝑧 ( 𝜑𝜓 ) ↔ ( ∃ 𝑦𝑧 𝜑𝜓 ) )
2 1 exbii ( ∃ 𝑥𝑦𝑧 ( 𝜑𝜓 ) ↔ ∃ 𝑥 ( ∃ 𝑦𝑧 𝜑𝜓 ) )
3 19.41v ( ∃ 𝑥 ( ∃ 𝑦𝑧 𝜑𝜓 ) ↔ ( ∃ 𝑥𝑦𝑧 𝜑𝜓 ) )
4 2 3 bitri ( ∃ 𝑥𝑦𝑧 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥𝑦𝑧 𝜑𝜓 ) )