Metamath Proof Explorer


Theorem 19.41vvvv

Description: Version of 19.41 with four quantifiers and a disjoint variable condition requiring fewer axioms. (Contributed by FL, 14-Jul-2007)

Ref Expression
Assertion 19.41vvvv ( ∃ 𝑤𝑥𝑦𝑧 ( 𝜑𝜓 ) ↔ ( ∃ 𝑤𝑥𝑦𝑧 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 19.41vvv ( ∃ 𝑥𝑦𝑧 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥𝑦𝑧 𝜑𝜓 ) )
2 1 exbii ( ∃ 𝑤𝑥𝑦𝑧 ( 𝜑𝜓 ) ↔ ∃ 𝑤 ( ∃ 𝑥𝑦𝑧 𝜑𝜓 ) )
3 19.41v ( ∃ 𝑤 ( ∃ 𝑥𝑦𝑧 𝜑𝜓 ) ↔ ( ∃ 𝑤𝑥𝑦𝑧 𝜑𝜓 ) )
4 2 3 bitri ( ∃ 𝑤𝑥𝑦𝑧 ( 𝜑𝜓 ) ↔ ( ∃ 𝑤𝑥𝑦𝑧 𝜑𝜓 ) )