Metamath Proof Explorer


Theorem 19.42

Description: Theorem 19.42 of Margaris p. 90. See 19.42v for a version requiring fewer axioms. See exan for an immediate version. (Contributed by NM, 18-Aug-1993)

Ref Expression
Hypothesis 19.42.1 𝑥 𝜑
Assertion 19.42 ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ( 𝜑 ∧ ∃ 𝑥 𝜓 ) )

Proof

Step Hyp Ref Expression
1 19.42.1 𝑥 𝜑
2 1 19.41 ( ∃ 𝑥 ( 𝜓𝜑 ) ↔ ( ∃ 𝑥 𝜓𝜑 ) )
3 exancom ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ∃ 𝑥 ( 𝜓𝜑 ) )
4 ancom ( ( 𝜑 ∧ ∃ 𝑥 𝜓 ) ↔ ( ∃ 𝑥 𝜓𝜑 ) )
5 2 3 4 3bitr4i ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ( 𝜑 ∧ ∃ 𝑥 𝜓 ) )