Description: Theorem 19.42 of Margaris p. 90. See 19.42v for a version requiring fewer axioms. See exan for an immediate version. (Contributed by NM, 18-Aug-1993)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 19.42.1 | ⊢ Ⅎ 𝑥 𝜑 | |
Assertion | 19.42 | ⊢ ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ∃ 𝑥 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.42.1 | ⊢ Ⅎ 𝑥 𝜑 | |
2 | 1 | 19.41 | ⊢ ( ∃ 𝑥 ( 𝜓 ∧ 𝜑 ) ↔ ( ∃ 𝑥 𝜓 ∧ 𝜑 ) ) |
3 | exancom | ⊢ ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑥 ( 𝜓 ∧ 𝜑 ) ) | |
4 | ancom | ⊢ ( ( 𝜑 ∧ ∃ 𝑥 𝜓 ) ↔ ( ∃ 𝑥 𝜓 ∧ 𝜑 ) ) | |
5 | 2 3 4 | 3bitr4i | ⊢ ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ∃ 𝑥 𝜓 ) ) |