Metamath Proof Explorer


Theorem 19.42vvv

Description: Version of 19.42 with three quantifiers and a disjoint variable condition requiring fewer axioms. (Contributed by NM, 21-Sep-2011) (Proof shortened by Wolf Lammen, 27-Aug-2023)

Ref Expression
Assertion 19.42vvv ( ∃ 𝑥𝑦𝑧 ( 𝜑𝜓 ) ↔ ( 𝜑 ∧ ∃ 𝑥𝑦𝑧 𝜓 ) )

Proof

Step Hyp Ref Expression
1 exdistr2 ( ∃ 𝑥𝑦𝑧 ( 𝜑𝜓 ) ↔ ∃ 𝑥 ( 𝜑 ∧ ∃ 𝑦𝑧 𝜓 ) )
2 19.42v ( ∃ 𝑥 ( 𝜑 ∧ ∃ 𝑦𝑧 𝜓 ) ↔ ( 𝜑 ∧ ∃ 𝑥𝑦𝑧 𝜓 ) )
3 1 2 bitri ( ∃ 𝑥𝑦𝑧 ( 𝜑𝜓 ) ↔ ( 𝜑 ∧ ∃ 𝑥𝑦𝑧 𝜓 ) )