Description: Theorem 19.43 of Margaris p. 90. (Contributed by NM, 12-Mar-1993) (Proof shortened by Wolf Lammen, 27-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | 19.43 | ⊢ ( ∃ 𝑥 ( 𝜑 ∨ 𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∨ ∃ 𝑥 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-or | ⊢ ( ( 𝜑 ∨ 𝜓 ) ↔ ( ¬ 𝜑 → 𝜓 ) ) | |
2 | 1 | exbii | ⊢ ( ∃ 𝑥 ( 𝜑 ∨ 𝜓 ) ↔ ∃ 𝑥 ( ¬ 𝜑 → 𝜓 ) ) |
3 | 19.35 | ⊢ ( ∃ 𝑥 ( ¬ 𝜑 → 𝜓 ) ↔ ( ∀ 𝑥 ¬ 𝜑 → ∃ 𝑥 𝜓 ) ) | |
4 | alnex | ⊢ ( ∀ 𝑥 ¬ 𝜑 ↔ ¬ ∃ 𝑥 𝜑 ) | |
5 | 4 | imbi1i | ⊢ ( ( ∀ 𝑥 ¬ 𝜑 → ∃ 𝑥 𝜓 ) ↔ ( ¬ ∃ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) ) |
6 | 2 3 5 | 3bitri | ⊢ ( ∃ 𝑥 ( 𝜑 ∨ 𝜓 ) ↔ ( ¬ ∃ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) ) |
7 | df-or | ⊢ ( ( ∃ 𝑥 𝜑 ∨ ∃ 𝑥 𝜓 ) ↔ ( ¬ ∃ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) ) | |
8 | 6 7 | bitr4i | ⊢ ( ∃ 𝑥 ( 𝜑 ∨ 𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∨ ∃ 𝑥 𝜓 ) ) |