Step |
Hyp |
Ref |
Expression |
1 |
|
ioran |
⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) ↔ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) |
2 |
1
|
albii |
⊢ ( ∀ 𝑥 ¬ ( 𝜑 ∨ 𝜓 ) ↔ ∀ 𝑥 ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) |
3 |
|
19.26 |
⊢ ( ∀ 𝑥 ( ¬ 𝜑 ∧ ¬ 𝜓 ) ↔ ( ∀ 𝑥 ¬ 𝜑 ∧ ∀ 𝑥 ¬ 𝜓 ) ) |
4 |
|
alnex |
⊢ ( ∀ 𝑥 ¬ 𝜑 ↔ ¬ ∃ 𝑥 𝜑 ) |
5 |
|
alnex |
⊢ ( ∀ 𝑥 ¬ 𝜓 ↔ ¬ ∃ 𝑥 𝜓 ) |
6 |
4 5
|
anbi12i |
⊢ ( ( ∀ 𝑥 ¬ 𝜑 ∧ ∀ 𝑥 ¬ 𝜓 ) ↔ ( ¬ ∃ 𝑥 𝜑 ∧ ¬ ∃ 𝑥 𝜓 ) ) |
7 |
2 3 6
|
3bitri |
⊢ ( ∀ 𝑥 ¬ ( 𝜑 ∨ 𝜓 ) ↔ ( ¬ ∃ 𝑥 𝜑 ∧ ¬ ∃ 𝑥 𝜓 ) ) |
8 |
7
|
notbii |
⊢ ( ¬ ∀ 𝑥 ¬ ( 𝜑 ∨ 𝜓 ) ↔ ¬ ( ¬ ∃ 𝑥 𝜑 ∧ ¬ ∃ 𝑥 𝜓 ) ) |
9 |
|
df-ex |
⊢ ( ∃ 𝑥 ( 𝜑 ∨ 𝜓 ) ↔ ¬ ∀ 𝑥 ¬ ( 𝜑 ∨ 𝜓 ) ) |
10 |
|
oran |
⊢ ( ( ∃ 𝑥 𝜑 ∨ ∃ 𝑥 𝜓 ) ↔ ¬ ( ¬ ∃ 𝑥 𝜑 ∧ ¬ ∃ 𝑥 𝜓 ) ) |
11 |
8 9 10
|
3bitr4i |
⊢ ( ∃ 𝑥 ( 𝜑 ∨ 𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∨ ∃ 𝑥 𝜓 ) ) |