Metamath Proof Explorer


Theorem 19.44v

Description: Version of 19.44 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 12-Mar-1993)

Ref Expression
Assertion 19.44v ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 19.43 ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∨ ∃ 𝑥 𝜓 ) )
2 19.9v ( ∃ 𝑥 𝜓𝜓 )
3 2 orbi2i ( ( ∃ 𝑥 𝜑 ∨ ∃ 𝑥 𝜓 ) ↔ ( ∃ 𝑥 𝜑𝜓 ) )
4 1 3 bitri ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥 𝜑𝜓 ) )