Description: Theorem 19.45 of Margaris p. 90. See 19.45v for a version requiring fewer axioms. (Contributed by NM, 12-Mar-1993)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 19.45.1 | ⊢ Ⅎ 𝑥 𝜑 | |
Assertion | 19.45 | ⊢ ( ∃ 𝑥 ( 𝜑 ∨ 𝜓 ) ↔ ( 𝜑 ∨ ∃ 𝑥 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.45.1 | ⊢ Ⅎ 𝑥 𝜑 | |
2 | 19.43 | ⊢ ( ∃ 𝑥 ( 𝜑 ∨ 𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∨ ∃ 𝑥 𝜓 ) ) | |
3 | 1 | 19.9 | ⊢ ( ∃ 𝑥 𝜑 ↔ 𝜑 ) |
4 | 3 | orbi1i | ⊢ ( ( ∃ 𝑥 𝜑 ∨ ∃ 𝑥 𝜓 ) ↔ ( 𝜑 ∨ ∃ 𝑥 𝜓 ) ) |
5 | 2 4 | bitri | ⊢ ( ∃ 𝑥 ( 𝜑 ∨ 𝜓 ) ↔ ( 𝜑 ∨ ∃ 𝑥 𝜓 ) ) |