Metamath Proof Explorer


Theorem 19.45

Description: Theorem 19.45 of Margaris p. 90. See 19.45v for a version requiring fewer axioms. (Contributed by NM, 12-Mar-1993)

Ref Expression
Hypothesis 19.45.1 𝑥 𝜑
Assertion 19.45 ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ( 𝜑 ∨ ∃ 𝑥 𝜓 ) )

Proof

Step Hyp Ref Expression
1 19.45.1 𝑥 𝜑
2 19.43 ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∨ ∃ 𝑥 𝜓 ) )
3 1 19.9 ( ∃ 𝑥 𝜑𝜑 )
4 3 orbi1i ( ( ∃ 𝑥 𝜑 ∨ ∃ 𝑥 𝜓 ) ↔ ( 𝜑 ∨ ∃ 𝑥 𝜓 ) )
5 2 4 bitri ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ( 𝜑 ∨ ∃ 𝑥 𝜓 ) )