Metamath Proof Explorer


Theorem 19.45v

Description: Version of 19.45 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 12-Mar-1993)

Ref Expression
Assertion 19.45v ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ( 𝜑 ∨ ∃ 𝑥 𝜓 ) )

Proof

Step Hyp Ref Expression
1 19.43 ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∨ ∃ 𝑥 𝜓 ) )
2 19.9v ( ∃ 𝑥 𝜑𝜑 )
3 2 orbi1i ( ( ∃ 𝑥 𝜑 ∨ ∃ 𝑥 𝜓 ) ↔ ( 𝜑 ∨ ∃ 𝑥 𝜓 ) )
4 1 3 bitri ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ( 𝜑 ∨ ∃ 𝑥 𝜓 ) )