Description: A deduction version of one direction of 19.9 with two variables. (Contributed by Thierry Arnoux, 20-Mar-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 19.9d2rf.0 | ⊢ Ⅎ 𝑦 𝜑 | |
19.9d2rf.1 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) | ||
19.9d2rf.2 | ⊢ ( 𝜑 → Ⅎ 𝑦 𝜓 ) | ||
19.9d2rf.3 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 ) | ||
Assertion | 19.9d2rf | ⊢ ( 𝜑 → 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.9d2rf.0 | ⊢ Ⅎ 𝑦 𝜑 | |
2 | 19.9d2rf.1 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) | |
3 | 19.9d2rf.2 | ⊢ ( 𝜑 → Ⅎ 𝑦 𝜓 ) | |
4 | 19.9d2rf.3 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 ) | |
5 | rexex | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 → ∃ 𝑥 ∃ 𝑦 ∈ 𝐵 𝜓 ) | |
6 | rexex | ⊢ ( ∃ 𝑦 ∈ 𝐵 𝜓 → ∃ 𝑦 𝜓 ) | |
7 | 6 | eximi | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∈ 𝐵 𝜓 → ∃ 𝑥 ∃ 𝑦 𝜓 ) |
8 | 4 5 7 | 3syl | ⊢ ( 𝜑 → ∃ 𝑥 ∃ 𝑦 𝜓 ) |
9 | 1 2 | nfexd | ⊢ ( 𝜑 → Ⅎ 𝑥 ∃ 𝑦 𝜓 ) |
10 | 9 | 19.9d | ⊢ ( 𝜑 → ( ∃ 𝑥 ∃ 𝑦 𝜓 → ∃ 𝑦 𝜓 ) ) |
11 | 8 10 | mpd | ⊢ ( 𝜑 → ∃ 𝑦 𝜓 ) |
12 | 3 | 19.9d | ⊢ ( 𝜑 → ( ∃ 𝑦 𝜓 → 𝜓 ) ) |
13 | 11 12 | mpd | ⊢ ( 𝜑 → 𝜓 ) |