Description: A closed version of 19.9h . (Contributed by NM, 13-May-1993) (Proof shortened by Wolf Lammen, 3-Mar-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | 19.9ht | ⊢ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) → ( ∃ 𝑥 𝜑 → 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf5-1 | ⊢ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) → Ⅎ 𝑥 𝜑 ) | |
2 | 1 | 19.9d | ⊢ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) → ( ∃ 𝑥 𝜑 → 𝜑 ) ) |